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Resumo 

O carbono orgânico no solo (COS) é um indicador usado para análise da qualidade do solo e como 

este poderá intervir ao nível de mitigação e adaptação às alterações climáticas (AC). Esta tese foca-se 

na influência das AC no uso do solo e práticas de gestão. 

Para agricultura, dois cenários climáticos foram testados usando 63 culturas em 17 203 regiões. Com 

o modelo RothC, analisou-se de que forma as AC poderão amplificar sumidouros, ou fontes, de gases 

com efeito de estufa (GEE) do solo. Os resultados mostram que entre 31 e 100% das regiões irão 

perder reservas de COS com AC. A perda acumulada encontra-se entre 18 e 500 tC.ano/ha, 

dependendo da cultura. Nestas regiões, a manutenção do COS foi testada aumentando a entrada de 

C por intensificação da atividade agrícola, aumentando a produtividade usando fertilização. Em 

algumas regiões o aumento da produtividade compensa o aumento da mineralização, mas a emissão 

de GEE devido à produção e aplicação de fertilizantes reverteria os ganhos na maioria das regiões. 

Para pastagens, utilizaram-se medições locais de SOC em 4 explorações portuguesas e, usando 

aprendizagem computacional e o modelo RothC, foi possível obter os seguintes resultados: rácio raiz-

folha aproximadamente 3,2 e 2,3 para pastagens seminaturais e fertilizadas respetivamente, fração de 

tempo despendida por animal de 0,49 e 0,51, fração consumida pelo gado de 0,6 tC/animal. O erro da 

estimativa de COS com estes parâmetros foi de 1 tC/ha, sendo que este passo é essencial para a 

análise dos efeitos das AC em pastagens. 

Palavras-chave: Alterações Climáticas, Agricultura, Carbono Orgânico no Solo, Produtividade, 

Pastagens, Explorações Agrícolas 

 

Abstract 

Soil organic carbon (SOC) is a broad sustainability indicator for assessing soil quality and contribution 

for mitigation and adaptation to climate change (CC). This dissertation focuses on understanding how 

CC, land use and management practices affect SOC. 

Croplands were analyzed using two CC scenarios for 63 crop types in 17,203 unique homogenous 

territorial units globally. Using the RothC model, trends were analyzed to understand how CC can 

amplify the effects of soils as sink or source of greenhouse gases. Results show that between 31 and 

100% of Earth’s regions will lose SOC due to CC. The accumulated loss of SOC is between 18 and 500 

t C/ha depending on crop type. For these regions, an assessment was performed of the feasibility of 

overcoming the loss through increased C inputs to soil due to increasing yields. In some regions 

increased C inputs can potentially compensate for increased mineralization, but intensification could 

require increasing fertilizer use and generate new greenhouse gas emissions. 

For grasslands, measured SOC stocks were used to overcome gaps of information on 4 farms in 

Portugal. Using a machine learning method and RothC, results show a root-to-shoot ratio of 3.2 and 2.3 
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for unfertilized and fertilized pastures respectively, a fraction of time spent per livestock unit (LstU) equal 

to 0.49 and 0.51 livestock intake of 0.6 tC/LstU. The error of the posterior SOC estimation was 

approximately 1 tC/ha. This was a necessary step towards analyzing the effects of CC on grasslands. 

Keywords: Climate Change, Agriculture, Soil Organic Carbon, Yields, Croplands, Pastures   
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1. Introduction 

1.1. CC and SOM Interaction 

Human-induced climate change (CC) is now accepted throughout several scientific fields. Evidences 

connecting human activity as one of the main causes for the alteration of basic element cycles are 

overwhelming, including the Earth’s climate system (IPCC, 2014). Soils contain the largest pool of 

terrestrial carbon (Davidson & Janssens, 2006) and, due to its large size and residence time, soil organic 

carbon (SOC) can act as a large sink of atmospheric C (Gottschalk et al., 2012; Le Quéré et al., 2009; 

Paustian et al., 2016) or as a support to several ecosystem services. These services can range from 

increased nutrient cycling and water retention to purification (Millennium Ecosystem Assessment, 2005).  

The storage capacity presented by the soils is a key function of this terrestrial biome, influencing climate 

regulation and other soil functions (Wiesmeier et al., 2019). For the past five decades terrestrial 

ecosystems have been absorbing 25–30% of anthropogenic CO2 emissions (Le Quéré et al., 2009).The 

majority of this uptake occurs via C accumulation in forest biomass and soils (Pan et al., 2011). There 

is also evidence that soils contributed with 37% of the global emissions from agricultural production, 

emitting mainly non‐CO2 gases (CH4 and N2O) (Tubiello et al., 2015). Yet, when the analysis is 

conducted at a global scale, the global growth rate of atmospheric CO2 indicates that land and oceans 

have been maintaining their contributions at approximately the same rate as in the past (Ballantyne et 

al., 2012). This suggests that negative impacts of climate extremes on the global terrestrial C sink have 

neither been increasing nor decreasing disproportionately (Ernst Detlef et al., 2000). 

Soil has a dual role as it simultaneously affects and is also affected by climate change. Soil organic 

matter (SOM) can be accumulated, or depleted, in soils depending on the balance between organic 

inputs into soil (from soil and plants) and organic matter mineralization through degradation of organic 

matter mediated by microorganisms. As approximately 58% of the organic matter in soils is C from 

biological sources, its accumulation produces C sequestration from the atmosphere, while its depletion 

produces C emissions (Pribyl, 2010). CC can affect soils mainly through the increase of temperature 

and increase of moisture. These will accelerate decomposition processes of SOC and its posterior loss. 

A positive land carbon–climate feedback emerges with this phenomenon due to its potential to 

accelerate CC even more (Crowther et al., 2016) with the increase of CO2 release. However, this 

process can be slowed down by increased plant net yield. Photosynthetic favoring may occur due to 

climate shifts (J. Smith et al., 2005), leading to more C incorporation into the soil.  

Crop growth and yield have been notably affected by CC since the 1980s (Tao et al., 2012). A balance 

of SOC can be used to assess whether a given soil system is a sink or a source of C. SOC balances 

are calculated as the difference between carbon inputs from plants, animal sources or other organic 

amendments, and the losses occurring due to the mineralization/decomposition of organic matter 

(Carvalhais et al., 2014; Smith, 2008). In future terms it can be expected that, due to the increase of 

temperature in cooler regions, the net primary production (NPP) will increase in those areas. At the 

same time, the SOC’s decomposition will accelerate also due to the increase of temperature. The 

increase or decrease SOC stocks will depend on which process has a larger significance: increase in 
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plant inputs to the soil or organic matter decomposition (Gottschalk et al., 2012). The uncertainty arises 

of the maintenance of this soil’s C sink and its persistence over time despite the effects of CC. SOC’s 

response to CC is also prone to be different depending on specific crop types. The uncertainty of the 

magnitude of these phenomena is recognized nowadays, and the shortage of detailed reliable SOC 

stocks data in permanent crops contributes significantly to the lack of knowledge for the total C budget 

(Marras et al., 2015). The estimation of those effects is critical to support both landscape policy and 

planning a sustainable development path, such as those related to an agricultural sustainable 

intensification perspectives (Caddeo et al., 2019).  

1.2. Land Use Systems 

The increased challenge in crop production associated with the deterioration of soil’s health highlights 

the necessity for quantifying the potential of grassland and cropland soils to sequester C, store nutrients, 

and support growth of diverse microbial community to develop a sustainable agricultural system 

(Ghimire et al., 2019). An increasing soil fauna activity (Hu et al., 2016) results in a positive feedback 

regarding SOC’s accumulation (Kallenbach et al., 2016) and, thus, a negative feedback on CC. Some 

soil physicochemical properties that reflect soil fertility and structure are soil texture, soil porosity, soil 

aggregate stability, and SOC which is widely used to indicate soil quality (Guo et al., 2018; Raiesi & 

Kabiri, 2016). Increasing SOC storage, and its associated improvements in soil health of agricultural 

fields, is important for maintaining agronomic production and environmental benefits emerge, such as 

soil C sequestration and greenhouse gas (GHG) mitigation (Ghimire et al., 2019).  

Perennial grasses typically have deeper and denser root systems than annual agronomic crops such as 

wheat or sorghum (Bhandari et al., 2018). This means that grasslands with their abundant roots and 

litter significantly affect soil porosity, SOC, and other soil properties (Wu et al., 2010, 2016) such as soil 

texture and soil fertility regulation (Wu et al., 2016). Fine roots decompose significantly faster than 

coarse roots (Zhang et al., 2016) leading to the increase in SOM. Roots also favor the formation of soil 

pores, which influences soil properties due to change in burrowing activity and biomass of earthworms 

(Fischer et al., 2014) resulting in more abundant SOC. 

Ghimire et al. (2019) compared grasslands and croplands in the semiarid Southern Great Plains and 

showed that grassland soils accumulated 18% more SOC than cropland soils in the 0–80 cm profile, 

whilst at 0–20 cm depth grasslands SOC stocks were 37% greater than in croplands. At lower soil 

depths, SOC content was not significantly different between both systems. The microbial community 

size on the topsoil layer, from 0–20 cm depth, was 90% greater, and enzyme activities were 131–155% 

greater in the grasslands than in the croplands. Within grasslands, cattle grazing increased microbial 

community size by approximately 42%. This study suggests that light grazing has the potential to 

improve soil health and resilience through an increase in SOC and microbial community responses 

related to nutrient cycling.  

Artificial or managed grasslands are widely used throughout the world owing to their good ecological 

effects and feeding value of forage grasses (Li et al., 2007). This type of grasslands improves soil 

habitats and controls soil loss via fine root network development and litter accumulation (Wu et al., 
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2010). With abundant grass yield and lower water consumption, higher ecological benefits are 

associated to this kind of ecosystems than to traditional crops management (Cui et al., 2019). 

Grasslands can be considered as a suitable candidate for crop rotation to increase land productivity and 

promote sustainable agricultural management (Cui et al., 2019). 

1.2.1. Croplands 

To face CC, high expectations have been set for exploiting agricultural soils as sinks for atmospheric 

CO2 (Rattan Lal et al., 2015; Minasny et al., 2017). Soils are able to store significant quantities of C over 

time via photosynthesis (Houghton & Nassikas, 2017; Scurlock & Hall, 1998). When lands are perturbed 

through the introduction of new crops, this C can re-enter the atmosphere via combustion or decay 

(Houghton et al., 1983). Natural C stocks are thus highly sensitive to the policy and economic conditions 

that drive land use and land management decisions (Lambin et al., 2001). Emissions vary according to 

the crop type under exploration, reflect the geography of crop-specific expansion and the characteristics 

of the land (Spawn et al., 2019). Strategies are then needed to reduce the need for expansion and to 

significantly reduce land use change (LUC) emissions (Spawn et al., 2019). Both, current and projected 

world demand, could be met through production on existing cropland by closing global ‘yield gaps’, 

reducing waste, modifying diets, and revising biofuel policy (Erb et al., 2016; Mauser et al., 2015; P. 

Smith et al., 2013).  

LUC is a leading cause of anthropogenic C emissions and it is associated to impacts on CC (Foley et 

al., 2005; Houghton et al., 1983; Le Quéré et al., 2018). LUC has been pointed as the agent of nearly 

one-third of cumulative net emissions globally (Houghton & Nassikas, 2017) and currently accounts for 

roughly 10% of all annual emissions (Le Quéré et al., 2018). Many of these emissions result from tropical 

deforestation, which displaces large quantities of C stored primarily in plant biomass (Houghton & 

Nassikas, 2017; Le Quéré et al., 2018). Emissions from LUC are difficult to estimate and represent one 

of the most uncertain components of the global C budget (Ramankutty et al., 2007). 

Regardless of the magnitude of soil’s contribution to CC mitigation, increasing SOC content is also 

desirable to enhance the quality and functioning of arable soils. SOC is an important indicator of soil 

quality, contributing to land productivity and ecosystem health. The distribution of SOC can be influenced 

by the crop type under exploration, irrigation and fertilization, litter and root biomass (Jobbágy & 

Jackson, 2000; Meurer et al., 2019). Management practices might also impact the vertical distribution 

of C in the soil profile. Management practices such as organic inputs, sustainable fertilization, crop 

rotation, cover crops, change from annual to perennial crops and reduced tillage or no-till, have been 

identified to potentially accumulate SOC (Freibauer et al., 2004; R Lal, 2004; Paustian et al., 2016). For 

a farmer, however, the formulation of an environmentally-oriented mindset can be costly due to required 

investments as well as a possible decrease in yield (Kragt et al., 2012).  

To increase SOC stocks in croplands, investing in perennial crops can constitute an advantage. The 

cultivation of perennial crops tends to enrich the C close to the soil surface in comparison to dominantly 

annual crops, which exhibited a less steep C gradient with depth (Heikkinen et al., 2020). The 

concentration of SOC in the upper soil layer is subject to the influence of vegetation (plant allocation of 
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C above and below ground) and possible agricultural soil alterations, whereas SOC in deeper soil layers 

is less easily affected (Börjesson et al., 2018; Jobbágy & Jackson, 2000; Menichetti et al., 2015). In the 

topsoil layer, for example, tillage affects the SOC’s profile strongly (Angers & Eriksen-Hamel, 2008; 

Poirier et al., 2009). Under a no-tillage approach SOC accumulates closer to the soil surface, whereas 

ploughing mixes the SOC and distributes it more homogeneously throughout the ploughed layer (Angers 

& Eriksen-Hamel, 2008; Poirier et al., 2009).  

1.2.2. Grasslands 

Grasslands are, today, one of the most endangered ecosystems mainly due to LUC, agricultural 

intensification, and abandonment (Pärtel et al., 2015). As this ecosystem plays a central role in global 

food security (Schaub et al., 2020) the need for its monitoring (Fauvel et al., 2020) is emergent. The 

exponential growth of population worldwide, the continuous changes in demand and climatic challenges 

increase pressure on grassland-based production. This ecosystem covers a major share of the world’s 

agricultural area. In Europe natural and unfertilized grasslands cover 22% of agricultural land surface 

(Bengtsson et al., 2019). 

Grasslands, which are frequently referred to interchangeably as pastures, can be divided into 

categories. Throughout the development of this thesis, two specific types were studied: fertilized and 

unfertilized pastures. In general, fertilized grasslands tend to have fewer herbaceous species than those 

that are unfertilized (Socher et al., 2013). The most important factors affecting the yield of grassland 

communities are water and nutrient availability, which influences the biodiversity of the community. High 

values of phosphorus, nitrogen and potassium decrease the biodiversity of grasslands (Merunková & 

Chytrý, 2012). Limiting nutrients can then influence the richness pattern (Palpurina et al., 2019) forcing 

the present species to demonstrate their capability for adaptation to compose this type of ecosystem, 

with distinct species adapted to nitrogen and phosphorus limitation at different levels (Roeling et al., 

2018). The plant species diversity in grasslands are known to increase and stabilize biomass yields 

(Schaub et al., 2020). The functional groups found in this habitat are usually categorized as graminoids, 

nitrogen-fixing legumes and other herbaceous species (Socher et al., 2013). The complementarity of 

these functional groups leads to a greater efficiency in acquisition of available resources. Different 

species have different needs or/and sources of resources. For example, a positive feedback can be 

found for the nitrogen (N) fixing ability of legumes from which other species in the community also benefit 

(Lüscher et al., 2014), particularly in grass-legume mixtures (Schaub et al., 2020). Biomass yields, and 

their quality, are highly affected by site-specific characteristics and farmers’ management decisions 

(Milberg et al., 2020). These are essential to retain the characteristic diversity of flora and fauna found 

in these habitats (Milberg et al., 2020).  

As plant species diversity plays an important role in grasslands (Schaub et al., 2020), and the ratio of 

particular functional group biomass depends largely on grassland type and local abiotic conditions, it 

leads to differences between countries or even subregions (Tóth et al., 2018). Factors such as site yield, 

site history and other local conditions may play a crucial role to define the ecosystem (Herrero-Jáuregui 

& Oesterheld, 2017) meaning that the results are rarely transferable, as they need to be replicated over 

many sites. To assess the conditions of grasslands, ecological surveys are required. This implies that 
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the results are highly constrained in spatial extent and in temporal frequency, limiting grassland 

monitoring to a local scale and usually over a short period of time (Fauvel et al., 2020). Although field 

surveys provide valuable and high-quality data at a point scale, they cannot easily be upscaled while 

considering the landscape heterogeneity. Field surveys alone cannot address the need to monitor 

grassland biodiversity over large spatial extents and other techniques relating to field surveys should be 

considered (Fauvel et al., 2020). 

The conversion of grasslands into arable land decreases soil C due to the reduced C input from litter 

and the loss of this component by tillage (Jones & Donnelly, 2004). Other factors controlled by mankind, 

including overgrazing, intensive agricultural production, deforestation, urbanization (Costanza et al., 

2014; Newbold et al., 2016; O’Mara, 2012), drainage, intercropping, the use of pesticides, mineral and 

organic fertilizers (Török et al., 2019) can have devastating effects on flora and fauna, leading to a loss 

of biodiversity and its related ecosystem services (Hao & Yu, 2018). To maintain favorable conditions 

for grassland species, knowledge regarding how they occur in relation to grazing intensity and soil 

nutrient availability is key (Milberg et al., 2020).  

The majority of the biomass produced in grasslands is used for animal husbandry, through either direct 

grazing or haymaking for winter forage (Heinsoo et al., 2020). Grazing by large herbivores is a major 

driver of the ecosystem processes in open landscapes worldwide. The effect of grazing on vegetation, 

and its suitability as a conservation tool, largely depends on the livestock type and its grazing intensity 

(Tóth et al., 2018). Due to the large body size of cattle, grazing intensity should be carefully chosen to 

prevent soil erosion (Salvati & Carlucci, 2015). Grazing can maintain a higher diversity in grasslands 

due to supporting the co-existence of several plant species by reducing intra and interspecific 

competition (Tóth et al., 2018). For example, cattle and horses eat the taller grasses while sheep prefer 

forbs and short grasses (Tóth et al., 2018). Grazing animals shapes species composition, not only 

through the consumption of biomass, but also by redistributing nutrients via deposition of dung and urine 

(Ma et al., 2016), soil compaction and erosion via trampling (Eichberg & Donath, 2018), and dispersal 

of seeds on their fur, hooves or dung (Freund et al., 2015). By doing so, grazers alter habitat conditions 

and create micro-habitats for plant species (Balázs et al., 2014; Smit & Putman, 2011). Extensive cattle 

grazing is effective in suppressing noxious species and creates a mosaic of short and tall species in the 

short run, which enables the maintenance of high species richness in the landscape (Török et al., 2016). 

It was also stated that high grazing intensity leads to land degradation, due to intensive trampling, 

nutrient input and excessive defoliation (Gaitán et al., 2018). 

1.3. State of the Art 

Multiple authors have tried to assess the effect of LU on the SOC balance. Smith et al. (2005) assessed 

future changes in cropland and grassland SOC stocks using Rothamsted Carbon Model (RothC) on a 

European grid with climate data from four global climate models developed by the Intergovernmental 

Panel on Climate Change (IPCC). It was shown that certain cropland and grassland soils would suffer 

a small increase in soil carbon per area under future climate. Results also show that total European 

cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario due to the 

decreasing area of cropland and grassland. According to this study, different trends are seen in different 
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regions. Falloon and Smith (2006) followed then the same principles but only for European forests, an 

ecosystem which is not under the scope of this thesis.   

Licker et al. (2010) presented spatial datasets of both potential yields and yield gap patterns for 18 crops 

around the year 2000. Using spatial datasets, yield patterns were compared to the most dominant crops 

within regions of similar climate. This analysis has allowed to conclude that even though climate is a key 

driver of global crop yields, there are still considerable factors in yields’ behavior attributable to other 

factors. Factors like land management practices can majorly influence yields. This study also states that 

with conventional practices, it would be probably necessary to use more chemicals, nutrients and water 

inputs to bring crop yields up to their potential. This human intervention can adversely affect ecosystem 

goods and services, and in turn human welfare, which led to a reflection that society needs to develop 

more sustainable high-yielding cropping practices. 

Gottschalk et al. (2012) found that there is no single possible answer regarding SOC’s stocks evolution 

under the effect of CC. The model chosen was RothC (Coleman & Jenkinson, 1996) and it was used to 

examine possible soil responses to future climate. Land use (divided into 3 categories: arable, grass 

and forest land) and interactions with projected future LUC were considered. Even though the effects of 

LUC were examined, the effects of yield and how it will evolve due to CC were not. SOC’s simulation 

was done using different climate scenarios, marking an evolution for the scientific community.  

Stergiadi et al. (2016) assessed the effects of climate change and land management on SOC 

accumulation and SOC distribution across different pools to simulate past (1906–2012), present, and 

future (2013–2100). SOC levels were assessed in sandy and loamy soils under three aggregated land 

use types (forest, grassland, and arable land). Four future climate scenarios of the Royal Dutch 

Meteorological Institute were used. These scenarios, however, only cover the Netherlands and 

surrounding countries. Only one land management scenario was considered, which accounted for the 

implementation of the European Union guidelines concerning the maximum levels of nutrients added to 

the soil.  

Morais et al. (2018) also used the process-based model RothC to establish the likely dynamic SOC 

evolution after LUC in the region of Alentejo in Portugal. The application of the climate scenarios was 

carried out with constant increments in temperature (ºC/month) and precipitation (mm/month) which 

would likely affect the role of LU in SOC accumulation, influencing the LUC choices today. The results 

show that attainable SOC stocks vary significantly depending on the LU class, particularly for croplands.  

Wiesmeier et al. (2019) had the main objective to review and identify sets of indicators that enable a 

quantification of SOC storage at different spatial scales. Starting from micro-scales (particles to pedons) 

to a global one, the indicators for SOC storage identified were: clay mineralogy, specific surface area, 

metal oxides, calcium and magnesium cations, microorganisms, soil fauna, aggregation, texture, soil 

type, natural vegetation, land use and management, topography, parent material and climate. This 

identification did not allow to conclude if the yield depends on the behavior of SOC stocks. It allowed to 

set indicators for time and cost-efficient estimates of actual and potential SOC storage for a local, 

regional, and subcontinental scale. As a key element, the fine mineral fraction was identified to 
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determine SOC stabilization in most soils. This can be refined by including climatic proxies, particularly 

elevation, as well as information on land use, soil management and vegetation characteristics. 

All available studies showed one main limitation, which was the use of very aggregate LU classes. The 

only example available at the global scale that introduced subdivisions within classes is Morais et al. 

(2019). SOC dynamics was assessed in 28 LU classes related to agricultural (under different 

management practices), 16 forest classes and 1 grassland class using RothC globally. Even though the 

analysis was conducted for 17,000 regions of the world, the climate simulation did not take CC into 

account. For grasslands, the aggregation of LU occurred again, compiling all types of grasslands into 

one single LU class since there was no data available to differentiate and characterize grassland 

systems globally. The findings of this work showed that converting land to cropland can result in SOC 

increase in some regions, particularly when the soil remains covered with crop residues, or when using 

irrigation. It also provided a regional and detailed understanding of C sequestration.  

1.4. Dissertation Structure 

The goal of this thesis is to contribute to a better understating of the potential changes that land use, 

CC and management will produce on global SOC stocks. SOC is the most important component for the 

maintenance of soil quality (Vaneeckhaute et al., 2014). Its role on improving physical, chemical, and 

biological properties of the soil is determinant (Panakoulia et al., 2017). SOC affects the chemical and 

physical properties of the soil, such as water infiltration ability, moisture holding capacity, nutrient 

availability, and the biological activity of microorganisms (Gan et al., 2013). SOC is thus a strong 

determinant of soil fertility which in turn stimulates primary production (Panakoulia et al., 2017). Under 

CC, decomposition processes are expected to increase in magnitude in many regions of the World. As 

SOC loss is foreseeable, an urgent environmental problem arises. The magnitude of those problems is 

highly dependent on the ecosystem studied. By doing a LU characterization (croplands and pastures), 

it is possible to consider how their management can minimize possible effects arising from CC.  

Regarding croplands, the objective is to understand how CC impacts SOC stocks and yield gaps at a 

global scale, and how C inputs can influence those variables. All the required calculations were made 

using the RothC model. RothC is a multi-pool SOC model that allows the assessment of SOC responses 

under different future climatic possibilities at global level. Its application will be similar to what was done 

by Morais et al. (2019) with the addition of future CC scenarios provided by IPCC for 17,203 regions 

and 63 crop types. Each crop will have its SOC content assessed and analyzed. After the results, a  

comparison between scenarios under CC and  considering climate stabilization without CC (NCC) was 

made. This step was performed to understand the level of C inputs into soil required to maintain NCC 

SOC stocks for each crop for the 87 years of simulation. The yield computed was also compared with 

the available estimates of potential yields. If the required yield is lower than the potential, then 

maintaining SOM stocks is feasible through an increase in yield. If closing the gap is insufficient to 

maintain SOM, then climate change will necessarily generate additional emissions. For the regions 

where the computed yield to maintain SOC stocks is still lower than the potential, the increase of C 

inputs can be used to minimize those losses but would require fertilization. The production and 

application of the fertilizers needed to attain the computed yields under CC was evaluated to understand 
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if the CO2eq emissions of production and application of fertilizers is higher than the estimated loss of 

SOC in the CC scenarios when compared with the NCC scenario. 

The conclusions of this analysis help understand if the path to satisfy an increasing population and 

demand for energy, food, fiber, and water (Steffen, 2003) can be accomplished by agricultural 

intensification (Licker et al., 2010). Intensification can bring other problems that were not assessed here, 

such as a greater vulnerability of yields to CC (Pugh et al., 2016) due to the presence of monoculture 

(Alexandratos & Bruinsma, 2012). The demand for agricultural products is expected to increase by 70–

110% by 2050 (Alexandratos & Bruinsma, 2012) due to a projected world population of 9 billion people, 

leading to an increase in meat consumption and a growing use for bio-based materials and biofuel 

(Alexandratos & Bruinsma, 2012). Increasing agricultural production, without considering social and 

environmental externalities and changing climate conditions (Tilman et al., 2011), can cause trade-offs 

between different uses of land and ecosystem services (Zabel et al., 2014). Considering that climate is 

the main limiting factor for yields, CC cannot be excluded whilst SOC dynamics in croplands is studied.  

The global heterogeneity and lack of detailed data for grasslands prevented the application of the same 

methodology described for croplands. In this case, the work carried out in this thesis involved one region, 

namely Alentejo, Portugal, and two specific pasture systems. RothC was also used, even though this 

model was developed originally for croplands and not pastures, as a tool for evaluating SOC in 

Portuguese pastures. The approach followed was similar to the work by Morais et al. (2018) for sown 

biodiverse pastures, using data published by Teixeira et al. (2011) this time distinguishing fertilized and 

natural pastures. Using only SOC measured from 4 farms in mainland Portugal from 2002, and knowing 

the estimated livestock excretion for beef cattle obtained by Morais et al. (2018), a reparameterization 

for those farms was performed. Missing data was estimated using a combination of machine learning 

with an inverse approach to RothC. Root to shoot (RS) ratio, livestock intake (LI), ratio between easily 

decomposable and resistant plant material (DPM/RPM) and the fraction of time that the animals spend 

at each pasture system were estimated. Those data were then used to calibrate the RothC model 

enabling the estimation of SOC stocks for each of the farms for 2003 and 2004. A comparison was then 

made with in situ measurements in those same farms and years.  

The overall procedure for the thesis development previously explained is schematically represented at 

Figure 1 according to the respective land use system.  
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Figure 1 – Scheme to represent the procedure used for the thesis development. 
Land use (LU) systems studied are colored in dark grey, the main steps are colored in light grey (CC – climate change, SOC – soil organic carbon, N – nitrogen), the models 

used are in yellow (RothC- Rothamsted Carbon Model), the main inputs required are in brown (IPCC – International Panel for Climate Change), the main results are in blue 

(∆SOC – shows the losses or gains of SOC when comparing the SOC results with CC and without, ∆yield – states if it is possible or impossible to maintain SOC stocks from the 

NCC reality under the CC scenarios implemented assessing if the required yield for this to occur is lower than the potential, DPM/RPM ratio - easily decomposable and the 

resistant plant matter, the fraction of time spent per livestock unit on natural pastures, RS - the root to shoot ratio, LI - the livestock intake), the main conclusions are colored in 

red (in case of a negative effect) and green (in case of a positive effect).  
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The structure followed throughout this thesis is based on 4 chapters: introduction, materials and 

methods, results and discussion, and concluding remarks. The first chapter, the introduction, reveals 

the importance of the study performed as well as the scientific knowledge gathered on the topic. This 

contributes to understanding what the state of the art is, and the importance of the topic under study. 

An extensive explanation of the main concepts is given before a deeper analysis, contributing for a 

better understanding on the topic and the results obtained. 

Materials and methods, the following section, explains in detail the approach and methods followed to 

obtain the intended results. As this thesis focuses on two main LU systems, croplands and pastures, 

this section was also split into two different sub-sections. For croplands, the approach follows the logic 

sequence of explaining how the data was treated and collected, the explanation of the RothC model 

implementation, the different approaches used to calculate yields, the correlation analysis between the 

climate variables and the effects on crops according to each CC scenario. It is also explained how the 

fertilization scenarios were applied and evaluated, in the cases where the potential yield is higher than 

the computed one. Regarding Portuguese pastures, as the approach does not take into account different 

CC scenarios and the scale reduces from global to regional, the materials and methods section explains 

why the Alentejo region is relevant for this kind of study, as well as the optimization procedure used.  

The next chapter, results and discussion, is also divided into two sub-sections. The results found for the 

global modelling of SOC for croplands show what are the global climate trends first, distinguishing the 

main trends identified for both CC scenarios simulated. The results for SOC stocks are then presented 

for all the 63 crop types as well as the yields necessary to maintain the computed NCC stocks under 

the influence of CC scenarios. Results are then presented for Spearman correlations between yield 

gaps and residues, and climate, where it is possible to assess which of the climate variables, 

precipitation or temperature, can explain the evolution found for each crop type. The results found for 

fertilization are the last ones to be presented and they state if the increase in yields through this method 

reflects, or not, a positive feedback to CC due to the associated CO2 emissions. All these results are 

then assessed and compared with the literature to understand if they are corroborated by prior research. 

The results for grasslands are evaluated differently due to the different approach followed. The 

parameters that characterize the farms under analysis were found in the first place. This data set is then 

used to compute the SOC results for each of the farms. These results were then compared with the 

actual measured SOC stocks. The discussion is then based on explaining the feasibility of this method, 

namely if the difference between measured and computed is acceptable. Literature was also evaluated 

to validate the results obtained. 

To complete the dissertation, concluding remarks can be found. The objective of this chapter is to 

answer all the main questions presented in the beginning of the study so that all main findings are 

highlighted. In addition, a bibliographic section is presented, which characterizes the importance and 

relevance of the subjects here addressed as well as the scientific robustness presented by this work.  
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2. Materials & Methods 

2.1. SOC Global Modelling in Croplands Under CC 

2.1.1. Study Area 

The area covered by the analysis was the entire world, divided into 17,203 regions. These regions were 

defined as unique homogeneous territorial units (UHTU), presented in the following Figure 2, which can 

be seen as the result of the intersection of three geographical layers: present LU class, soil type and 

soil texture (Morais et al., 2019). Some areas were excluded similarly to what was done by Morais et al. 

(2019), namely arctic and desert regions. This happens due to the lack of information for the parameters 

defined and the lack of agricultural potential.  

 

Figure 2 – Division of the simulated areas into unique homogeneous territory units (UHTUs). 

 

2.1.2. Croplands Under Analysis 

The analysis considered 63 crop types, as shown in Table 1. These crop types were chosen because 

they were considered the most produced and traded between 2004 and 2014 in the World (FAO, n.d.). 

When applicable, two variants of each crop were introduced for irrigation system (rainfed or irrigated) 

and from management decisions (to remove or not the residues after the harvesting period). This 

removal is only accounted for cereal crops which are barley, maize, rapeseed, sorghum, and wheat. For 

all other crops, the removal of residues is implicit.  
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Table 1 – Crop types used for the simulation of soil organic carbon (SOC) global modelling in croplands under 
climate change (CC) scenarios 

Crop Types Crop Types 

1 Irrigated bananas 33 Rainfed rice 

2 Rainfed bananas 34 
Irrigated sorghum  

with residues left on the field 

3 
Irrigated barley  

with residues left on the field 
35 

Rainfed sorghum  

with residues left on the field 

4 
Rainfed barley  

with residues left on the field 
36 

Irrigated sorghum  

with residues removed from the field 

5 
Irrigated barley  

with residues removed from the field  
37 

Rainfed sorghum  

with residues removed from the field 

6 
Rainfed barley  

with residues removed from the field  
38 Irrigated soybeans 

7 Irrigated cabbages 39 Rainfed soybeans 

8 Irrigated carrots 40 Irrigated sugar beet 

9 Irrigated oranges 41 Rainfed sugar beet 

10 Rainfed oranges 42 Irrigated sugarcane 

11 Irrigated coconuts 43 Rainfed sugarcane 

12 Rainfed coconuts 44 Irrigated sunflower 

13 Irrigated coffee 45 Rainfed sunflower 

14 Rainfed coffee 46 Irrigated sweet potatoes 

15 Irrigated cotton 47 Rainfed sweet potatoes 

16 Rainfed cotton 48 Irrigated tobacco 

17 Irrigated groundnuts 49 Rainfed tobacco 

18 Rainfed groundnuts 50 Irrigated tomatoes 

19 
Irrigated maize  

with residues left on the field 
51 Rainfed tomatoes 

20 
Rainfed maize  

with residues left on the field 
52 

Irrigated wheat  

with residues left on the field 

21 
Irrigated maize  

with residues removed from the field 
53 

Rainfed wheat  

with residues left on the field 

22 
Rainfed maize  

with residues removed from the field 
54 

Irrigated wheat  

with residues removed from the field 

23 Irrigated palm oil 55 
Rainfed wheat  

with residues removed from the field 

24 Rainfed palm oil 56 Irrigated cocoa 

25 Irrigated onions 57 Rainfed cocoa 

26 Irrigated potatoes 58 Irrigated grapes 
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Crop Types Crop Types 

27 Rainfed potatoes 59 Rainfed grapes 

28 
Irrigated rapeseed  

with residues left on the field 
60 Irrigated olives 

29 
Rainfed rapeseed  

with residues left on the field 
61 Rainfed olives 

30 
Irrigated rapeseed  

with residues removed from the field 
62 Irrigated apples 

31 
Rainfed rapeseed  

with residues removed from the field 
63 Rainfed apples 

32 Irrigated rice   

 

2.1.3. RothC Application 

The model chosen to run all simulations was RothC due to its history of prior applications for estimating 

recent and future trends in SOC in cropland soils at the local (Liu et al., 2011; Morais et al., 2018), 

regional (Coleman et al., 1997; Smith et al., 2005; Lark et al., 2019), and global scales (Gottschalk et 

al., 2012; Morais et al., 2019). This model also enables decision making and land users to assess the 

impact of management practices on SOC (Dechow et al., 2019) by iteratively adjusting C inputs from 

plants and animals to soil (Falloon & Smith, 2006). This model requires a relatively manageable set of 

inputs regarding land, soil, and climate data. The implementation of RothC was made using MATLAB 

vR2017a . Due to the code’s extension it will not be presented here explicitly, however it will be available 

by request to the thesis’ proponent.  

For the global modelling of SOC for croplands, climate data are required. The climate variables used 

were precipitation (mm), mean air temperature (ºC) and open pan evaporation (mm). As RothC has a 

monthly step, all these variables were adjusted in accordance with the model’s necessities. Temperature 

and precipitation were obtained from the IPCC (Bruun et al., 2015). The data sets start at 2005 and 

reach the year 2100, offering a time series of 95 years. The aim of working with scenarios is not to 

predict the future, but to better understand uncertainties in order to reach decisions that are robust under 

a wide range of possible future possibilities (Ballantyne et al., 2012).  

These scenarios are needed because they allow to describe plausible trajectories of climate conditions, 

and other aspects, of the future that are uncertain. The implications of CC for the environment and 

society will depend not only on the response of the Earth system to changes in radiative forcing, but 

also on how humankind responds through changes in technology, economy, lifestyle and policy, leading 

to extensive uncertainties (Moss et al., 2010). When applied in CC research, scenarios help to evaluate 

the uncertainty related to human contributions, possible Earth system responses to human activities, 

the impacts of a range of future climates, and the implications of different approaches to mitigation 

(measures to reduce net emissions) and adaptation (actions that facilitate response to new climate 

conditions) (Moss et al., 2010). Scientific community identified a specific emission scenario from peer-
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reviewed literature as a plausible pathway towards reaching each target radiative forcing trajectory. 

These were given the label representative concentration pathways (RCPs) (Moss et al., 2010). Moss et 

al. (2010) explains that the word ‘representative’ means that each RCP provides one out of many 

possible scenarios that leads to a specific radiative forcing characteristic. The term ‘pathway’ 

emphasizes that the trajectory taken over time to reach concentration levels are of interest, not only the 

concentrations per se. From the four RCPs, each of which corresponding to a specific radiative forcing 

pathway, two were chosen for the development of this work: RCP 4.5 and RCP 8.5.  

Hurtt et al. (2011) explained the main differences between the two climate scenarios chosen. RCP 4.5 

assumes that global GHG emissions prices are used to limit emissions, meaning that a penalty price is 

used to limit radiative forcing. C removals from LUC were assumed to be a mitigation strategy. 

Agricultural land was assumed to decline slightly due to afforestation. Food demand was met through 

crop yield improvements, dietary shifts, production efficiency and international trade. Radiative forcing 

stabilizes at 4.5 Wm−2 (approx.650 ppm CO2eq) before 2100 without ever exceeding that value. For RCP 

8.5, energy and industry’s CO2 emissions represent 90% of the reference emissions range. The 

emissions pathway is assumed to reach a radiative forcing of 8.5 W/m−2 and rising in 2100. An important 

feature of the RCP 8.5 was the assumption of increasing cultivated land by about 185 million ha from 

2000 to 2050 and another 120 million ha from 2050 to 2100. While aggregate arable land use in 

developed countries was predicted to decrease, all the net increases are assumed to occur in 

developing countries. Yield improvements and intensification were assumed to account for most of the 

needed production increases: while global agricultural output in the scenario increased by 135% by 

2080, cultivated land expanded by only 16% above 2005 levels. As agricultural land expands, forest 

cover is expected to decline over the century by 300 million ha from 2000 to 2050 and another 150 

million ha from 2050 to 2100.  

Regarding the implementation, it was simultaneously done for a baseline scenario, that considers 

climate stabilization at current average levels (NCC), as well as for the two chosen CC scenarios. In the 

NCC case, temperature and precipitation were kept constant throughout the 87 years of simulation. This 

value was obtained doing the average of the first 96 months of the available data sets by IPCC for each 

CC scenario yearly (from 2005 to 2013). That means that for each UHTU there is a monthly value for 

precipitation and temperature that results from averaging past data for eight years  kept constant for the 

remaining 87 years of simulation. It is then expectable that both temperature and precipitation have 

different values according to the scenario under implementation. The starting point for the CC simulation 

is the same but at the 8th year the results start to diverge according to the different CC scenarios.  

To understand the main differences between climate scenarios over the entire period of analysis, an 

average from the first 10 years was made, as well and the last 10. These two averages were then 

subtracted leading to the results presented further below in Figure 4. This procedure was repeated for 

precipitation and temperature. 

Adding to the precipitation and temperature provided by the two RCPs used, evaporation also needs to 

be considered. This variable was calculated assuming that it is equal to two thirds of potential 
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evapotranspiration (PET). PET was calculated using the Thornthwaite formula (Equation (1)). This 

formula requires the mean daily air temperature (Td, which, if negative, should be set to zero), number 

of sunlight hours per day (L), a parameter (α) dependent on the heat index (I, that is dependent on 12 

monthly mean temperatures, Tmi) computed using Equation (2), and number of days per month (N). This 

variable is then used in the following steps to calculate the water needs for each crop for a specific 

region. PET is therefore calculated as 

 
PET = 16 (

L

12
) (

N

30
) (

10∗Td

I
)

α

, (1) 

where  

 α=(6.75 ∗ 10−7)I
3
-(7.71 ∗ 10−5)I

2
+(1.792 ∗ 10−2)I+0.49239, (2) 

and 

 
I = ∑ (

Tmi

5
)

1.514
12
i=1 . (3) 

PET enables the calculation of the water needs for each crop (Equation (4)). For this variable it was 

considered the single crop coefficient (kc), known for each of the crop types (Chapagain & Hoekstra, 

2004), which was then multiplied by the previously calculated PET.  

Knowing that 

 water needs = PET ∗ kc, (4) 

it is possible to know what the required irrigation for a given region under a certain crop type is because: 

{
If water needs > precipitation ⇒ irrigation

If water needs < precipitation ⇒ irrigation = 0
 . 

That is, if  the water needs presented by a certain crop type in each region of the world are higher than 

what nature can provide locally through precipitation, then irrigation is necessary. Irrigation was then 

equalized to the gap found between water needs and precipitation. If precipitation is sufficient to fulfill a 

given crop’s needs, then there is no necessity of providing irrigation. 

The soil characteristics also had to be defined. The soil depth considered was 30 cm. The percentage 

of clay and initial distribution of SOC between the 5 existing pools were obtained from Morais et al. 

(2019). In RothC, these pools are the inert organic matter (IOM), easily decomposable plant material 

(DPM), resistant plant material (RPM), microbial biomass (BIO) and humified organic matter (HUM) 

(Morais et al., 2018). The IOM pool is resistant to decomposition and does not change over time 

(Coleman & Jenkinson, 1996).  

It is important to highlight that this initial distribution of SOC was established regardless of the crop type 

implemented locally for each region. The modelling starts with a simple case of LUC due to the lack of 

sensibility regarding the already existent crop type. Emissions from LUC are notoriously difficult to 

estimate and represent one of the most uncertain components of the global C budget (Ramankutty et 
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al., 2007). Adding this uncertainty to the lack of future predictions for LUC considering the influence of 

CC for croplands, LUC was not considered throughout the 87 years of simulation. The only way where 

it was necessary to implicitly assume the existence of LUC in the simulation was through the allocation 

of the SOC stock present locally to the potential crop existent, and that SOC stock may be representative 

of a different cropland system.  

Information about the land it is also important namely the definition of land cover and plant residues. 

Land coverage of each UHTU in each month and crop type is used as binary variable (1 – crop is 

present; 0 – crop is absent). This variable can affect the capture of carbon due to C inputs into the soil 

and also mineralization and it was only calculated when the previous parameter was different than zero. 

For each crop, a crop calendar was used to obtain the soil coverage period (Chapagain & Hoekstra, 

2004) .  

As the objective is to estimate the gap between yields with CC and NCC, it was necessary to determine 

the production yields with the crop’s characteristics and residues. Residues calculation was made 

following the method presented by Morais et al. (2019) where the IPCC methods (IPCC, 1997; IPCC, 

2003; IPCC, 2006) were applied.  

For croplands, C residues are determined for an entire year and then distributed monthly. This 

distribution considered the monthly NPP and the life stages of plants. This method was proposed by 

Jebari et al. (2018) and Morais et al. (2018) where crops are divided into two categories. In the case of 

cereal crops, 50% out of the total residues occur in the harvesting month and the remaining is equally 

distributed for the three months before harvesting. Permanent crops see 70% of their residues allocated 

to the pruning months and the remaining distributed to the four months before. The months for 

harvesting and pruning were obtained from Chapagain et al. (2004). 

With the residues, yields could be calculated knowing that they are related through a linear function for 

most croplands according to 

 residues = (AG + RB) ∗ 0.5 , (5) 

where AG stands for aboveground productivity, and RB stands for reserve bases. The value of 0.5 is 

repeated throughout all the expressions because it is assumed that 50% of the plants’ biomass is carbon 

(IPCC, 2006). These two variables can be calculated as 

 
AG = yield ∗ slope + intersect, (6) 

and 

 
RB = yield ∗ RS. (7) 

The final expression to compute yields is 

 
yield = 

[
residues

0.5
 - intersect]

slope + RS
. (8) 
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The values for slope and intersect for each crop were obtained from IPCC (2006). 

There are exceptions, as for example crops with a null slope. The particularity of this crop type is not 

contemplated on the procedure presented by IPCC (2006) and therefore the expression used comes 

from IPCC (1997). To calculate the yield for these crops it is then required to use  

 residues = yield ∗ RS ∗ 0.5 ⟺ (9) 

 
⟺ yield = 

residues

RS ∗ 0.5
. (9.1) 

Another exception comes when the straw, after the harvesting period, is only partially removed from the 

site. Another expression for yield’s calculation must then be used. For these, it was assumed that 50% 

of the residues are removed from the field (IPCC, 1997). This expression is identical to the first one with 

only one particularity, AG productivity is also multiplied by 0.5 and it can be stated as 

 residues = (0.5 ∗ AG + RB) ∗ 0.5 ⟺ (10) 

 

⟺ yield = 
[
residues

0.5
 - 0.5 ∗ intersect]

0.5 ∗ slope + RS
. (10.1) 

After the formulation for yields’ calculation, the model still needed an initial SOC content to distribute 

between the 5 different pools. The data here used was gathered from Weihermüller et al. (2013).  

As previously mentioned, NCC and CC results were calculated simultaneously. The intention was to 

know what yield would be necessary to maintain the NCC SOC stocks for a given crop type in a specific 

region of the world under CC. This required the addition of another step in the simulation. To do these 

calculations, 3 methods were tested. All the approaches tested used the function fmincon, provided by 

MATLAB considering different stop conditions. This function finds the minimum of constrained nonlinear 

multivariable function using an 'interior-point' algorithm. The establishment of a stop condition is then 

necessary, and it was set to 10-6. 

The first approach tested checked what would be the yield required under CC to maintain the total 

accumulated SOC in the case of climate stabilization for each crop type and UHTU throughout the 87 

years of simulation. This approach required that  

 ∫ SOCNCC
2100

2013
≈ ∫ SOCCC

2100

2013
, (11) 

which in practice performed a search for the yield that, under the new climate conditions, would make 

the area under the curve of SOC, i.e. the integral, equal in NCC and CC scenarios. 

In terms of the code, the implementation of the fmincon function was made to minimize the difference 

between the area below the curve of NCC and CC SOC stocks. After the calculation of the CC SOC 

with the respective climate variables, the fmincon would solve the condition 

 

Solve = |ANCC − ACC|, (12) 
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where ANCC represents the area below the curve of the computed SOC stocks under NCC, that is, the 

accumulated SOC throughout the 87 years of simulation; and ACC is the same but under CC. 

Another approach tested was to find the yield that made SOC stocks in the year 2100 equal under NCC 

and CC, which means that 

 SOCNCC
2100

 ≈ SOCCC
2100

. (13) 

The calculations were made iteratively to find a yield that in 2100 approximated Equation (13). 

The coding implementation was similar the previous one. The adjustment made allowed the fmincon 

function to minimize the difference between the SOC stocks found for the year 2100 under CC and 

NCC. The formulation used was  

 
Solve = |SOCNCC

2100 − SOCCC
2100|. 

(14) 

 

The last approach tried to find a single yield that equalized SOC stocks yearly for every year of the 

simulation. This means that 

where i is the year between 2013 and 2100. 

The difference of SOC stocks between NCC and CC scenarios was implemented onto the code using 

a yearly regression. The minimization criteria that the function fmincon had to follow was the sum of all 

calculated differences for the 87 years of simulation. The formulation for the resolution of this problem 

was 

From these 3 approaches, the one that obtained the SOC under CC closer to the NCC scenario was 

the first one. No viable results were obtained for the other two approaches. Consequently, all results 

presented further below for yields, and further estimates that require this parameter, were based on the 

first approach only.  

2.1.4. Comparison Between Yields 

The potential yield for the crop types analyzed (IISA/FAO, 2012) consider the difference between 

irrigation or rainfed provision of water and include fertilization by C. These yields are supplied in dry 

matter (DM) and so, to compare the required yield to avoid SOC loss due to CC with the potential yield, 

an adjustment was necessary. This adjustment was the division of the results already obtained for yield 

by DM content. For this reason, DM is omitted from the previous equations.  

Comparing yields allows to determine in which UHTUs is possible to compensate the effect of CC, and 

the UHTUs where this is not possible. Yield gaps are henceforth designated as ∆yield and were 

calculated by subtracting the potential and the calculated yields. This means that every time that ∆yield 

is negative the crop yield needs to increase above the potential to generate sufficient C inputs and 

maintain total SOC stocks over the period analyzed, in which cases it is impossible to avoid losing SOC. 

 SOCNCC
year i

 ≈ SOCCC
year i

, (15) 

 
Solve = sum |SOCNCC

𝑖 − SOCCC
𝑖 |. (16) 
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When ∆yield is positive, there is a feasible (lower than potential) increased yield for that crop that 

ensures sufficient C inputs into soil to maintain the SOC stocks under CC. 

Another approach was followed to compare the yields’ results. A comparison between NCC and CC 

yields was conducted by dividing the NCC results by the required yields to maintain SOC stocks, from 

the respective scenario. The same was repeated using potential yield and those computed yields with 

CC. This allowed to understand how many times the yield under NCC, or the potential yield, would have 

to increase to reach the yield computed under CC. 

2.1.5. Spearman Correlation 

After the results for SOC stocks and yields were obtained, under CC and NCC, it was necessary to 

explain them using the main input variables, namely precipitation and temperature. With this it was 

possible to conclude for each crop type which of the variables influences more the results for ∆yield.   

The method chosen to do this correlation was the Spearman correlation coefficient. This approach 

allows the assessment through a statistical variable (𝜌) where the dependence of two variables is tested 

using a monotonic function. It is tested if a monotonic function can explain the behavior of one of the 

variables in function of the other. The perfect Spearman correlation occurs when 𝜌 is equal to +1 or -1. 

A score close to these values means that the variables have a monotonic function that fits into the trends 

shown by both variables. If the resulting coefficient is found to be positive it shows that the monotonic 

function explaining the variables’ behavior is crescent (when one of the variables increase, the second 

follows this trend). When the data sets are completely opposite, the correlation factor should be closer 

to -1 (when the reduction of one variable occurs, the other one is increasing) and follow a descendent 

monotonic function. 

Besides the 𝜌 variable, the p-value was also calculated. This parameter is important because it 

measures how probable it is for the correlation to occur by chance. The p-value is confined in the interval 

between 0 and 1. A p-value closer to the unit suggests no statistically significant correlation, whilst a p-

value closer to zero suggests that there is a very high probability that there is real a correlation between 

the data sets evaluated.  

2.1.6. Increasing Yields Through Fertilization 

For the crop types, and regions, that have a potential yield higher than the required yield to preserve 

SOC stocks, the impact of the production and application of additional fertilizers needed was considered 

(assuming fertilizers were of mineral origin). These emissions were then compared with the ones 

avoided due to the stabilization of SOC. With this approach it is possible to understand if the increase 

in yields to keep SOC stocks stable does not backfire through increased emissions from intensification 

and fertilization. This required the conversion of the calculated CC and potential yields, per region and 

crop type, into N-yields. The parameters used for this conversion (Lassaletta et al., 2014) are listed in 

the Annex I per crop type. 
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With the N content for the CC and potential yields it was possible to apply the following fertilization 

response curve 

 YCC(F) = Ypotential
F

F + Ypotential
, 

 

(17) 

where YCC (t/ha) represents the N-yield calculated using each of the CC scenarios per region and crop 

type, Ypotential (t/ha) is the potential yield that a certain region of the world has for a given crop type and 

F (t/ha) is the total amount of N inputs for the fertilization. The equation was then inverted to obtain F as  

 F = 
YCC

1 - 
YCC

Ypotential

. 

 

(18) 

The emissions were calculated using this amount of N required knowing the amount of emissions 

generated for its application, as well as the emissions made for its production. The emissions’ factor for 

fertilizer application used was 6.2 kg CO2eq/kg N (FAO, 2017). The production factor depends on the 

country where the fertilizer is being fabricated (FAO, 2017). Some adaptations for the utilization of these 

factors were required due to a discrepancy of the division of world regions from FAO and Morais et al. 

(2019). For Morais et al. (2019) the American continent is divided into North and Latin America, whilst 

FAO has a Central and South America as one region. The factor assigned for North and Latin America 

was then the same and equal to the value presented for Central and South America by FAO. In the table 

presented by FAO, Australia and New Zealand are divided, whilst for Morais et al. (2019) they are 

classified only as Oceania. The value assigned was correspondent to the Australian factor due to the 

major significance in terms of area for the continent. FAO’s table did not contemplate the African 

continent, thus the factor assigned was the global average. These adaptations are listed below on Table 

2.  

Table 2 – Factor to convert the production of fertilizers to CO2eq emissions per region of the world.  
A conversion was required due to a discrepancy of the FAO’s division of the world and the approach used on the 

unique homogeneous territory units (UHTU). For this reason, New Zealand saw its factor increase from 3.06 up to 

6.92 due to the higher significance of Australia in the Oceania continent, and Africa was not originally in the FAO’s 

table, leading to use global average. 

Regions FAO UHTUs Regions Factor (kg CO2e/kg of product) 

West Europe Western Europe 5.62 

East Europe including Russian Federation Eastern Europe 6.87 

Central and South America 
North America 3.53 

Latin America 3.53 

Asia Asia 4.00 

Australia 
Oceania 6.92 

New Zealand 

Global Average Africa 5.66 

 

Finally, the total emissions were calculated using 

 CO2emissions = F ∗ (Production factor + Application Factor) ∗ 87, 
 

(19) 
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where the 87 is the number of simulated years.  

If the increase in yield required to maintain SOC stocks was lower than the potential yield, the difference 

between the integral of SOC under NCC and CC was considered. The loss, or gain, of SOC was also 

converted into CO2eq emissions, using a mass balance and the molar mass (i.e. using the factor 44/12). 

These results were compared with the emissions originated from the production and application of the 

fertilizers. If emissions are higher with fertilization than without, then the yield increase would mean a 

positive feedback to CC (i.e. a backfiring rebound), because the emissions’ balance is higher with the 

fertilizers than with SOC loss. If the emissions are lower than what was previously computed with the 

SOC loss, then increasing yields with fertilizers is a feasible strategy to mitigate CC.  

2.2. RothC Calibration for Portuguese Unfertilized Pastures 

2.2.1. Study Area 

Due to the extensive areas dominated by shallow and rocky soils, mainly degraded through erosion and 

loss of nutrients, the use of fields as pasture is particularly important in southern Portugal where 

extensive animal husbandry is the predominant activity (Serrano et al., 2011). Alentejo, an area where 

pastures are mainly present, is a region located at the central-southern area of Portugal and it is typically 

characterized as having a Mediterranean climate. The summers of this type of climate are hot and dry 

followed by a winter with excess of precipitation and low temperatures. Under these Mediterranean 

conditions, grasslands’ productivity is typically low (Smit et al., 2008; Valada et al., 2012) showing the 

extreme importance to know how these soil–pasture systems work due the urgency of taking action 

towards a more sustainable management of these Mediterranean agroecosystems (Serrano et al., 

2013). 

Figure 3 shows the location of the 4 farms considered in this work. Most of the farms under analysis, 

regarding unfertilized pastures, are in Alentejo’s region (3 out of the 4 farms) and other one is located 

near Covilhã. 
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Figure 3 – Spatial localization on Mainland Portugal for the 4 farms under analysis. 

The data used to run the model was acquired from four different farms for the years 2002, 2003 and 

2004. The farms were divided into two main pasture types: fertilized and unfertilized. For both pasture 

types, the data acquired included SOM content (%), which was then converted into SOC content by 

multiplying by the average C fraction in organic matter (0.58, Pribyl, 2010), soil density (g/m3) and soil 

depth (0.1 m). Soil density and soil depth adopted were obtained from the LUCAS-topsoil database 

(Tóth et al., 2013)).  

SOM was determined using soil field sampling, at 10 cm depth, in several parcels for each farm. To get 

a sample representative from each farm, one composite sample was obtained by mixing of a variable 

number of sub-samples collected throughout each parcel. Samples were dried overnight at 35–37ºC 

and crumbled mechanically, passing then through a 2 mm stainless steel sieve before the measurement 

of the organic matter content (Teixeira et al., 2011). 

The soil covered period is also a required variable and was considered binary. Between the months 

September and June, the value attributed was 1, and, for the rest of the simulation year 0 was assigned. 

This is the typical agronomic practice: to fully graze the pasture before summer, meaning that the soil is 

not covered. Regarding monthly irrigation, the fields were rainfed, not needing the provision of external 

irrigation. Monthly input of plant residues and manure farmyard (t C/ha) are also required. Manure was 
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not applied in these experimental farms. Carbon inputs were introduced from two sources, from plants 

and animals using 

Iplant(t C ha⁄ ) = [(1 - LI) + RS] ∗ AGP ∗ CF, 

and 
(20) 

Ianimal(t C ha⁄ ) = LD ∗ SR ∗ fraction of time. (21) 

The variables in Equations (20) and (21) for the calculation of carbon inputs are root to shoot ratio (RS), 

proportional livestock intake (LI) (which is presented as kg of dry matter (DM) eaten dividing per kg of 

DM pasture yield), livestock dung excreted (LD) (presented as tons of C per livestock unit (LstU)), 

aboveground productivity (AGP) (presented has kg of dry matter per hectare), stocking rate (SR) 

(presented has LstU per hectare), carbon fraction of legumes and grasses (CF) (which was equal to 0.4 

t C/t DM (IPCC, 2006)) and the fraction of time that a LstU spends at the pasture. The time that LstU 

spends at fertilized pastures is represented by the subtraction of 1 and the time spent on the unfertilized 

pastures. 

More variables were needed for the initialization of the simulation, in this case the monthly air 

temperature and precipitation. These came from the “Global Precipitation Climatology Project (GPCP)” 

(Pendergrass et al., 2020) and the Land Processes Distributed Active Archive Center (LP DAAC) project 

(Wan et al., 2015). As for the croplands approach, the monthly open pan evaporation was assumed to 

be two thirds of the potential evaporation which was calculated using the Thornthwaite model, presented 

at equation (1).  

2.2.2. Optimization Procedure 

The optimization procedure used allowed the computation of the data that was not collected on site 

through field measurements but would be required to run simulations using RothC. As explained by 

Morais et al. (2018), to obtain this information indirect ways were used. The parameters required this 

type of calculation were the RS (which is necessary for estimating belowground productivity (BGP) as a 

function of AGP), the time that each of the LstU spent at the respective pasture, LI (kg DM/ kg DM) and 

the DPM/RPM ratio. To calibrate the model, the parameters were determined once (using data collected 

for the year 2002) and applied for all farms and production years. 

The first step was to establish a plausible domain of variation for each of the parameters. Afterwards a 

a value for the parameter was selected at random within that domain to initialize the optimization 

procedure. The initial SOC considered for each farm was collected on the year 2002, whereas the 

remaining SOC information was used for comparison. RothC was used to run and to calculate the SOC 

associated to each of those sets of numbers. 100 iterations were made and the difference between the 

computed SOC (SOCestimated) and the real one (SOCmeasured) was determined. This difference was 

subjected to the stop condition 
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minimize∑ (
SOCmeasured,i ‐ SOCestimated,i

SOCmeasured,i
)

2
n
i=1 + ∑ (

SOCmeasured,i ‐ SOCestimated,i

SOCmeasured,i
)n

i=1 , (22) 

where n represents the total number of data points simulated, that is, the number of production years, 

farms, and grassland types. This equation indicates that the algorithm is searching for the minimization 

of the difference between both variables in relative terms. If that condition was not reached, then the 

cycle would restart. 

The plausible intervals for the parameters subject to optimization are presented in Table 3, with 

respective references. 

Table 3 – Intervals of variation for each parameter subjected to randomized initialization. 
These variables are the root-to-shoot (RS), livestock intake (LI), the ratio between easily decomposable and 
resistant plant matter (DPM/RPM) and the time fraction, as well as the literature that supports these intervals where 
AGP stands for aboveground productivity. 

Parameter Maximum Minimum Explanation/Literature 

RS 8.0 0.5 IPCC, 2006; MOKANY et al., 2006 

DPM/RPM 1.44 0.60 Coleman et al., 2014 

LI 1 0 
0 – indicates no grazing 

1 – 100% AGP grazed by animals 

Time 

fraction 
1 0 

0 – indicates no time spent on the pastures 

1 – indicates 100% of time spent on the pastures 

 

For this non-linear problem the same function used on croplands, “fmincon”, was used.  

When the stop condition was met, it was possible to confirm that the “best” set of values was found. 

With that information, SOC was estimated for the years 2003 and 2004 for the exact same farms. This 

was made using RothC again to allow the comparison between the data collected on the field for both 

pastures with the calculated SOC amount predicted by the model.  
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3. Results & Discussion 

3.1. SOC Global Modelling in Croplands Under CC 

3.1.1. Data Analysis 

Temperature and precipitation are the main variables responsible for SOC’s behavior in scenarios under 

CC due to their impact on C inputs into the soil and SOC decomposition (Wiesmeier et al., 2019). To 

understand what impacts CC has on croplands, two CC scenarios were tested. The difference between 

scenarios is due to the assumptions made in the construction of the RCPs, as previously explained, and 

some of those differences are related with CO2 emissions and their radiative force (Hurtt et al., 2011).  

Figure 4 shows the difference of average temperature and precipitation in each UHTU between the start 

and end of the simulations in each scenario. The maps result from the subtraction of the average from 

2013 to 2023, and the average from 2090 and 2100. 

 

Figure 4 – Maps resulting from the subtraction of the average precipitation (a, b) and temperature (c, d) between 
the first 10 years of simulation and the average for the final 10 years.  
The first row shows the maps developed when differences for precipitation were calculated using (a) RCP 4.5 and 

(b) RCP 8.5. The second row shows the maps obtained for temperature using (c) RCP 4.5 and (d) RCP 8.5. 

 

For the RCP 4.5 CC scenario, if a global average is calculated using all simulation years, average yearly 

temperature increases from 17 ºC up to 19 ºC. The average maximum annual temperature  is 33 ºC and 

the minimum -12 ºC under RCP 4.5. In the IPCC RCP 8.5 climate scenario the increase of temperature 

is higher. For this scenario, global average annual temperature increases from 17 ºC to 21 ºC. The 

average maximum is 35 ºC and the minimum -9 ºC. If a constant increment is calculated over the 

simulation period, the increase is 0.03 ºC per year under RCP 4.5 and, under RCP 8.5, the yearly 

temperature increment is 0.04 ºC.  

The same kind of analysis was done for accumulated annual precipitation. To enable comparisons 
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global averages were also computed. Using this approach, under RCP 4.5, the average maximum 

accumulated annual precipitation is 4,336 mm and the minimum is 0 mm. Using RCP 4.5, the average 

annual accumulated precipitation is expected to increase from 1,007 mm in 2013 to 1,098 mm in 2100. 

For RCP 8.5, the expected increase of mean global accumulated precipitation is from 1,016 mm in 2013 

to 1,075 mm in 2100. Here the peak is at 4,565 mm and the annual minimum precipitation is also null. 

This means that RCP 4.5 expects an increase of 1 mm per year of global annual precipitation and, for 

RCP 8.5, precipitation increases by 0.7 mm/year. 

Annual averages for the climate variables previously shown are different for the year 2013. This happens 

because some effects of CC are already visible from 2005 to 2013 in the data set, which was used for 

calibration and computing the stable values for temperature and precipitation for the NCC scenario. It is 

also important to highlight that these values are global averages and, therefore, the maximum and/or 

minimum values in each region of the globe are higher, or lower, accordingly.  

RCP 4.5 predicts a higher increase in annual precipitation on average than RCP 8.5, which was 

expected due to the prediction of an increase of areas suffering from drought for RCP 8.5 (Reichstein 

et al., 2013; Schwalm et al., 2012). These regions are the ones with the highest potential of being 

affected by CC in C cycling, showing a higher probability to cause a shift from a carbon sink towards a 

carbon source (Frank et al., 2015; Reichstein et al., 2013). Potential climate feedbacks (like what was 

predicted for extreme drought in Europe by Schwalm et al. (2012) are expected. These extreme events 

are not only responsible for immediate responses from the ecosystems, but they can also be responsible 

for time-lagged ones, such as mortality, fires or insect infestations (Frank et al., 2015; Reichstein et al., 

2013). Their effects on C fluxes and stocks are thus nonlinear. A variation in the frequency or severity 

of climate extremes can then impact carbon sinks and may result in local positive feedbacks to climate 

warming (Reichstein et al., 2013). These concerns are relevant due to, in many biological systems, the 

presence of a higher resilience when it comes to gradual CC whilst showing a higher sensibility to climate 

extremes, since generally they require a greater strength in response and shorter response times 

(Hanson et al., 2006).  

New climate models predict an intensification of heavy precipitation events globally as well as the 

occurrence of heat extremes, and, therefore, regions with stronger or longer-lasting droughts (E. M. 

Fischer & Knutti, 2014). These climactic extremes, droughts, storms and extreme heat waves, cannot 

be seen as independent phenomena as in many regions they are intrinsically connected (Mueller & 

Seneviratne, 2012). Combining high temperatures with droughts can initiate a positive regional feedback 

mechanism (E. M. Fischer et al., 2007; Hirschi et al., 2011) as extreme drought  often reduces 

evapotranspiration and reduce the cooling effect (Peng et al., 2014). The extreme values analysis is 

crucial as a future step to understand what is happening on Earth’s ecosystems.  

3.1.2. SOC Global Tendencies  

SOC results were analyzed through an accumulated difference between the values of SOC in the 

baseline scenario (NCC) and the results under CC with the chosen RCPs. To assess these differences 

the global average ∆SOC per crop type is presented. This variable shows the difference between the 
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integral of both curves, namely for SOC’s evolution under CC and NCC scenarios throughout the 87 

years of simulation. The detailed results for the accumulated SOC per crop type throughout the 87 years 

of simulation in each CC scenario are on the appendix, as Annex II. In this table, the loss of SOC stocks 

can also be observed  per number of regions where it occurs as a percentage of the potential ones. 

That is, regions with decreasing SOC stocks are divided by the regions with potential for the existence 

of each respective crop type. Figure 5 displays the regional results considering the RCP 4.5 scenario 

for each LU class on a box-and-whisker plot. 

By applying IPCC’s scenario RCP 4.5, global trends show that, on average, there is a loss of SOC on 

31% up to 100% regions of the world depending on the crop type. The crop that is less affected, meaning 

that there are less regions with potential for its cultivation that lose SOC, is rainfed olives (SOC 

decreases in only 31% of regions). The opposite cases, the cases where there is a loss of SOC in 100% 

of the UHTUs, are irrigated coffee, sugarcane, cocoa, olives, and apples. In the climate scenario where 

conditions are more hostile (RCP 8.5), global trends show that the intervals are the same (between 31% 

and 100%) regarding the decrease in SOC stocks regionally. The crop that feels minimally the 

implementation of a new CC scenario is still rainfed olives, whereas the crops more affected, where 

100% of regions where they can be cultivated lose SOC, are irrigated potatoes, sugarcane, cocoa, 

olives, and apples.  

The other way to analyze the results is to check directly what is happening for each crop type on ∆SOC. 

It is important to highlight that the variable ∆SOC here presented is a global average for all regions with 

potential for the presence of each crop type. Whatever the conclusion is for each crop type, it does not 

mean that it is a true statement for all regions with potential for implementation of that cropland. As the 

universe of UHTUs under analysis is large, and some crop types have different number of regions with 

growth potential, by doing global averages in terms of cropland types, some minority results can get 

diluted.  

The global average for SOC loss is different between scenarios: 60 out of the 63 crop types under 

analysis have a ∆SOC lower when the simulation is done with RCP 8.5 than with the RCP 4.5 CC 

scenario even though the difference between scenarios is small. Respectively to RCP 4.5 and to 8.5, 

the intervals of accumulated SOC’s loss are from 18 to 469 t C/ha, and from 48 to 515 t C/ha. These 

results can be explained by the differences in terms of annual global temperature and precipitation 

between the two CC scenarios, as highlighted in section 3.1.1. The difference in 2100 reaches almost 

2 ºC and around 26 mm, for temperature and precipitation respectively. The difference between the 

precipitation events is small when compared to the increase in temperature. As the world is getting 

hotter without an equivalent increase in moisture, a slight acceleration of the decomposition processes 

for SOC (Building & Pasteur, 2005; Crowther et al., 2016) explaining the small decrease in global stocks 

under different scenarios. 
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Figure 5 – The effect of climate change on the difference between SOC curve with and without climate change for 
all the 63 unique land use systems, considering RCP 4.5 
The box-and-whisker plots represent the accumulated SOC stock difference between SOC curve without climate 

change and the SOC curve with climate scenario applied. 

Croplands present in tropical and temperate regions are the ones with higher loss in terms of number 

of regions. However, these regions are not the ones with the largest decreases in ∆SOC, apart from 

irrigated sugarcane. This crop is the one that suffers the most SOC loss independently of the climate 

scenario under simulation. The strongest SOC losses are then found for irrigated sugarcane in both 



29 
  

climate scenarios, where the loss is equal to -1,148 t C/ha for and -1,147 t C/ha for RCP 4.5 and RCP 

8.5, respectively. The maximum ∆SOC is also independent of the CC scenario. Whether RCP 4.5 or 

RCP 8.5 are applied, rainfed olives, present around the Mediterranean area, show a positive ∆SOC, as 

represented on Figure 6. What differs is the capability for C sequestration, changing from 96 t C/ha to 

78 t C/ha respectively. This positive result can be due to the flexibility presented by this crop to CC. On 

the Mediterranean area summers are hot and dry, followed by a winter with excess of precipitation and 

low temperatures. Also, under the influence of both RCPs analyzed the differences in temperature and 

precipitation for these regions are minimal, justifying the adaptability presented by this crop. 

The crops where this positive ∆SOC exist, meaning that they are increasing their SOC stocks, can act 

as a sink of C. This phenomenon can minimize the impacts of CC around the globe. This result can also 

show an increase for NPP for these crops, meaning that they are leaving more residues in the soil. This 

increase in SOC stocks can occur due to an approximation to their climate optimal. For these crops, the 

effect of increase in NPP is surpassing SOC’s decomposition process (Building & Pasteur, 2005; 

Crowther et al., 2016) in most of the regions analyzed.  

 

Figure 6 – Representation of the accumulated soil organic carbon (SOC) stocks results for the rainfed olives. (a) – 
using RCP 4.5; (b) – using RCP 8.5. 

Regarding the changes in SOC for the world, results show that between 31 and 100% of Earth’s regions, 

depending on the crop type under analysis, are prone to lose SOC stocks without land transformation. 

It is important to highlight that there are some crop types where all regions can suffer SOC loss. Even 

though the crop types where this happens may vary with climate scenario, overall, the crops where this 

phenomenon occurs are predominantly in lower latitude regions, mainly regions with a tropical or 

temperate moist climate. As the loss of SOC is associated with decomposition processes, which can be 

accelerated by having a combination of increasing temperatures and soil moisture, regions with lower 

latitudes see these conditions favored by CC (Gottschalk et al., 2012; Smith et al., 2005). An increase 

in temperature is also felt at higher latitudes, but it is not supported by an expressive increase in soil 
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moisture. This means that the decomposition processes do not become faster due to the soil’s dryness 

(Gottschalk et al., 2012).  

These results are more pessimistic than the ones presented by Stergiadi et al. (2016). Here SOC losses 

in agricultural systems reached only around 8%, but those results were only relative to Northwestern 

Europe. Also, another model was used to perform the simulation, in this case Century model. The results 

presented by Smith et al. (2005) show a difference when the analysis is conducted per unit area and at 

continental scale for Europe. This demonstrates the importance of the scales for this type of analysis. 

Per unit area, it was possible to achieve a small increase in SOC stocks, whilst, for the European 

continent, SOC stocks decrease for all scenarios in the order of 39-54% by 2080 for croplands. This 

report used only Europe for the simulation and other CC scenarios were applied: HadCM3, CSIRO2, 

PCM, and CGCM2, which are four global climate models from IPCC. The results obtained in this thesis 

contradict the ones found by Gottschalk et al. (2012). Even though the model chosen was the same, 

RothC, the results predicted that SOC stocks would continuously increase from 1971 up to 2100 with 

varying intensity in all scenarios except one. However, two sets of climate data from seven AOGCMs 

and four SRES scenarios were used in this study, which can influence SOC’s behavior.  

3.1.2.1. SOC Dynamics for Selected Crop Types 

To analyze data with more detail four crop types from different categories were selected: one cereal, 

one legume, one grass and one fruit. The crop chosen that fits into the cereal category was maize due 

to its massive production around the world, being considered as the most cultivated cereal (Mejía, 2003). 

The legume and the grass selected were, respectively, soybeans and sugarcane due to their 

environmental importance related to deforestation in tropical areas. Regarding the fruit category, the 

chosen example was grapes because it is categorized as a permanent crop. It is important to highlight 

that all four crops are rainfed and the residues are maintained on the field for maize.  

Table 4 summarizes the SOC results found previously for each chosen crop types under both climate 

scenarios and, on Figure 7 and Figure 8, it is then possible to spatially depict those results. This table 

shows that, independently of the crop’s category and CC scenario, the loss of SOC is inevitable when 

yields are the same as in the NCC scenario.  

The results shown in Table 4 were calculated as the difference between the accumulated SOC for the 

CC scenario and the NCC one (∆SOC). When the accumulated SOC throughout the 87 years of 

simulation from the CC scenario is lower than the one accumulated on the NCC scenario, a loss of SOC 

stocks for a particular region under a certain crop type can be found. In that case, the value presented 

is negative. 
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Table 4 – Soil organic carbon (SOC) results for selected crops under the influence of both climate scenarios under 
analysis (RCP 4.5 and RCP 8.5). 
Here results (∆SOC) are shown for the difference between the total accumulated SOC for the 87 years of simulation 

under climate change (CC) and a stable climate (NCC). ∆SOC was defined as the difference between the 

accumulated SOC under CC and the NCC stating a positive value when SOC stocks increase, and a negative value 

where SOC is lost. The percentage of regions that lose SOC is calculated by dividing the number of regions that 

lose SOC by the total regions with the potential for the existence of the crop under analysis. 

Crop Type 

CC Scenario RCP 4.5 CC Scenario RCP 8.5 

Regions with 

SOC loss (%) 

Average ∆SOC 

(t C/ha) 

Regions with 

SOC loss (%) 

Average ∆SOC 

(t C/ha) 

Rainfed maize with 

residues left on the field 
75 -498 77 -540 

Rainfed soybeans 85 -708 81 -754 

Rainfed sugarcane 98 -1,148 98 -1,147 

Rainfed grapes 83 -336 83 -365 

 

For the representation of the ∆SOC variable a “heatwave” type of map (Figure 7 for RCP 4.5 and Figure 

8 for RCP 8.5) was chosen where the more negative values are represented through a red vibrant color 

which evolve for the positive results represented by a vibrant green color. 

 

Figure 7 – Difference between the accumulated soil organic carbon (SOC) from the scenario under climate change 
(CC), using RCP 4.5, and the baseline scenario where climate is stable at current levels (NCC).  
When the accumulated SOC throughout the 87 years of simulation in the CC scenario is lower than SOC 

accumulated in the NCC scenario, the value is negative, stating a SOC loss. This approach was used for the 

representation of (a) rainfed maize with residues left on the field, (b) rainfed soybeans, (c) rainfed sugarcane and 

(d) rainfed grapes. 
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Figure 8 – Difference between the accumulated soil organic carbon (SOC) from the scenario under climate change 
(CC), using RCP 8.5, and the baseline scenario where climate is stable at current levels (NCC).  
When the accumulated SOC throughout the 87 years of simulation in the CC scenario is lower than SOC 

accumulated in the NCC scenario, the value is negative, stating a SOC loss. This approach was used for the 

representation of (a) rainfed maize with residues left on the field, (b) rainfed soybeans, (c) rainfed sugarcane and 

(d) rainfed grapes. 

For maize, SOC stocks decrease globally in RCP 4.5 and RCP 8.5 in the order of 498 t C/ha and 540 t 

C/ha, respectively. For soybeans, results for the same climate scenarios are -708 t C/ha and -754 t 

C/ha. Maize and soybeans have a widespread potential for production across the globe and in the global 

Northern areas the loss of SOC is higher. This can be due to the fact that, using Figure 4 as a reference, 

the increase of temperature is expected to be more intense in those areas. As previously mentioned, 

the increase of temperature, without an increase in moisture, leads to a slight acceleration of SOC’s 

decomposition, depleting the soil of this important asset. 

Grapes is the crop type with the least negative results regarding SOC loss, loosing globally an average 

of 336 t C/ha for RCP 4.5 and 365 t C/ha for RCP 8.5 throughout the 87 years of simulation. The regions 

where this crop has potential for growth are placed in UHTUs  that do not feel drastic CC impacts. Both 

temperature and precipitation are expected to remain approximately constant.  

With a completely different behavior there is sugarcane. This crop is the one with the most significant 

SOC loss. The global average ∆SOC is equal to -1,148 t C/ha for RCP 4.5 and -1,147 t C/ha for RCP 

8.5. One of the reasons to explain this SOC loss arises from the necessity that this crop has to spend 

long times with water availability and within a specific temperature range (Silva et al., 2020). This is 

something that, with the increase of climate extremes, may be compromised. Another reason can be its 

necessity for fertilization (Václavík et al., 2013), although this effect was not explicitly addressed in this 

part of the work. Currently, in the inner tropics, adequate temperature and moisture is present throughout 

the year, but soil quality often restricts cultivation due to low organic content (Ramankutty et al., 2002).  
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These results show a very negative future for agriculture globally. To understand if the maintenance of 

SOC stocks calculated for the NCC reality was feasible, the increase in carbon inputs through increasing 

yields was tested. The following section will assess this for the same crop types, using the same CC 

scenarios and 87 years of simulation. 

3.1.3. Comparison of Potential and Required Yields for SOC Stabilization 

The analysis for the crops yields was conducted using the annual value. A comparison was made using 

the values from the baseline scenario and the potential yields with the results under CC using RCPs. 

The difference between NCC yields and the yield required under CC, and the difference between the 

potential and the CC yield, were computed for each UHTU and per crop type throughout the 87 years 

of simulation. The results for this approach per crop type are presented as an appendix in Annex III. In 

this table, the regions where the loss of SOC is avoidable with an increase in yield, are shown as the 

“positive regions” (because the difference between required and potential yield is a positive number). 

The number of “positive regions” was then divided by the number of regions where the crop can 

potentially be produced, leading to the percentage shown. The difference between the potential and the 

required yield to maintain SOC stocks is also analyzed in this table (∆yield). This variable was calculated 

by subtracting the required yield for SOC’s maintenance for the different CC scenarios from the potential 

one. If this difference is found to be negative, then it shows that the potential yield is lower than the 

required yield to maintain SOC stocks. This means that the maintenance of those stocks is impossible 

because the required yield cannot be reached. If this difference is found to be positive, then it is feasible 

to compensate the SOC losses with an increase in yield (and consequent increase of C inputs into soil). 

It is possible to conclude that there are no large differences between the application of both climate 

scenarios, in percentual terms and in terms of number of regions. The difference represents, on average 

for the whole globe between the RCP 4.5 and 8.5 scenarios, a 4% difference in regions where the 

increase in yield is not  enough to compensate for the SOC losses. 

For this cropland yield analysis, an average for all crop types was made to enable comparisons between 

CC scenarios. It is possible to see that in 8 to 89% of regions the NCC SOC stocks, depending on the 

crop type analyzed, can be maintained with the RCP 4.5 CC scenario because the necessary yield is 

still lower than the potential one. The values vary from 8% (found for irrigated sugar beet), meaning that 

only about 8% of the regions with the potential to produce this crop are able to increase the yield in order 

to compensate for increased SOC mineralization due to CC, up to 89% for the production of rainfed 

sorghum with residues removal. In the RCP 8.5 scenario, and doing the same type of assessment, it is 

observed an interval of 5% to 88% of regions with capability to maintain SOC stocks due to the possibility 

of attaining the necessary yields to compensate the SOC loss depending on the crop type analyzed. 

The minimum (5%) and maximum (88%) values correspond to irrigated sugar beet and rainfed sorghum 

with residues removal again.  

The difference between crops can be explained through the regions where the crop types are preferably 

settled. Sugar beet can be mainly found in temperate regions of the northern hemisphere (Figure 9) 

whereas sorghum has a nearly global potential for its settlement (Figure 10). Temperate regions are 
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some of the areas where climate fluctuations are expected to be stronger due to CC. It is also important 

to highlight that different crop types have different requirements from the environment where they are 

settled. For example, sugar beet has greater soil and climate requirements, requiring a substantial 

rainfall level as well as heavy fertilization due to the high biomass production potential (Intermag, n.d.). 

Sorghum can grow on low potential and shallow soils with high clay, can better tolerate short periods of 

waterlogging and is characterized as being a warm-weather crop, which requires high temperatures for 

good germination (du Plessis, 2008). Sorghum can even be produced in South Africa under fluctuating 

rainfall conditions showing its ability to tolerate drought better than most other grain crops (du Plessis, 

2008). 

 

Figure 9 – Representation of the ∆yield (difference between the potential yield and the yield calculated for the 
respective climate change (CC) scenario) for irrigated sugar beet.  
Here (a) corresponds to the RCP 4.5 CC scenario, whilst (b) are results for the RCP 8.5 scenario. In the cases 

where this variable is found to be negative, the red color is attributed due to the impossibility to increase yields to 

guarantee the maintenance of SOC stocks. When the ∆yield is found to be positive, then the green color shows the 

areas where the loss of SOC is avoidable by increasing yields. 

 

 

Figure 10 – Representation of the ∆yield (difference between the potential yield and the yield calculated for the 
respective climate change (CC) scenario) for rainfed sorghum. 
Here (a) corresponds to the RCP 4.5 CC scenario, whilst (b) are results for the RCP 8.5 scenario. In the cases 

where this variable is found to be negative, the red color is attributed due to the impossibility to increase yields to 

guarantee the maintenance of SOC stocks. When the ∆yield is found to be positive, then the green color shows the 

areas where the loss of SOC is avoidable by increasing yields. 

A quantitative analysis can also be conducted. For this type of analysis, the variable ∆yield allows to 

see, doing a global average, the results for yields when both climate scenarios are applied so that SOC 

stocks are maintained from the NCC scenario. The difference of yields (between required and potential 

yields) increased when the simulation passed from RCP 4.5 to 8.5. The minimum differences are -51 

t/ha and -54 t/ha, and the maximum differences are around 1 t/ha, for each respective CC scenario. This 

is corroborated by the fact that for 49 out of 63 crop types the required difference of yields is larger for 

RCP 8.5, the more hostile CC scenario. This evolution can happen due to the increase in number of 

regions where the necessary production yield to maintain SOC stocks is higher than the soil’s potential.  
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The main qualitative results for most of the crop types are similar in both climate scenarios. If the 

difference between required yields and NCC yields is found to be negative under RCP 4.5, it is also 

negative when RCP 8.5 is used. The same is true for cases where this difference is positive, except for 

3 crop systems (irrigated barley where residues are removed from the soil, rainfed oranges and irrigated 

palm oil). For these 3, it is impossible to maintain SOC stocks globally in RCP 8.5. These crops denote 

the degradation of conditions for SOC stocks’ maintenance even with a boost in yields due to worse 

climate conditions. There are also crops where minimizing the difference between the potential and the 

required yield is possible even under RCP 8.5. These crops are: rainfed barley with straw, rainfed 

oranges, irrigated coconuts, rainfed cotton, irrigated and rainfed maize without residues removal, rainfed 

maize with no straw, rainfed palm oil, irrigated and rainfed sorghum with no straw, irrigated sweet 

potatoes, irrigated wheat without residues removal, rainfed wheat with residues removal, irrigated 

grapes and rainfed olives. 

If the difference between required yields and potential yields is closer to zero, it means that the potential 

yield of a certain crop is closer to the one needed for the maintenance of SOC stocks using the 

respective RCP. When the difference starts increasing it can go in two different directions: negative 

(which means that the crop needs to increase the yield above its respective potential and requires more 

than what the field can potentially give, implying that it is impossible to maintain SOC stocks at the same 

level as in the NCC scenario) and positive (meaning that it is still, theoretically, possible to increase the 

crops’ output in that region to maintain the SOC stocks of the baseline scenario). For RCP 4.5 the 

regional differences are displayed on Figure 11 through a box-and-whisker plot. Here, the maximum 

difference found for the crops where it is unfeasible to maintain SOC was found for irrigated tomatoes 

(-51 t/ha). The spatial distribution of tomato results can be seen in Figure 12. The causes for this result 

are not geographical because it is found potentially throughout all potential UHTUs globally. For cases 

where it is feasible to maintain SOC, the one with largest difference between required and present yields 

is rainfed sorghum with no straw (1 t/ha), whose spatial distribution of results is shown in Figure 10. 

Finally, the minimum difference can be found for irrigated palm oil (0.005 t/ha). For RCP 8.5 results are 

similar, with the wider negative difference found for irrigated tomatoes, but with a higher absolute value 

(54 t/year), and the wider positive difference can be found for the rainfed sorghum with no straw, but 

now with approximately 1 t/year, while the minimum difference is from rainfed palm oil (0.01 t/year).  
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Figure 11 – Comparison between the potential yield and the required yield to compensate the effect of climate 
change on SOC for all the 63 unique land use systems, considering RCP 4.5.  
The box-and-whisker plots represents the required yield to maintain NCC stocks and the potential, i.e. a positive 

value means that potential yield is higher than the required yield, and negative means that required yield is higher 

that potential yield. 
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Figure 12 – Representation of the ∆yield (difference between the potential yield and the yield calculated for the 
respective climate change (CC) scenario) for irrigated tomatoes. 
Here (a) corresponds to the RCP 4.5 CC scenario, whilst (b) are results for the RCP 8.5 scenario. In the cases 

where this variable is found to be negative, the red color is attributed due to the impossibility to increase yields to 

guarantee the maintenance of SOC stocks. When the ∆yield is found to be positive, then the green color shows the 

areas where the loss of SOC is avoidable by increasing yields. 

Passing now to the analysis of the extreme values it is possible to see that the negative values become 

more negative and the positive values decrease when using RCP 8.5 rather than RCP 4.5. In the first 

case, in regions where it was already impossible to maintain the SOC stocks, if CC effects become more 

extreme, the imbalance between required and present yields is even larger. The same happens with 

decreasing ∆yields on positive values. That shows the approximation to the plant optimal conditions in 

specific regions due to CC.  

Globally, the necessity to increase yields to preserve SOC stocks has not yet been studied extensively. 

However, Müller & Robertson (2014) showed that CC led to strong decreases in agricultural productivity 

in most of the agricultural areas without additional measures. On a global scale, crop yields were 

estimated to decrease by 10% to 38% by 2050 for the five crops simulated (wheat, maize, rice, soybean, 

groundnut) for both CC scenarios (RCP 4.5 and RCP 8.5). This shows that, if nothing is done regarding 

the SOC stocks on croplands, soil conditions can deteriorate faster. Due to lower productivity, less C 

inputs is introduced into the soils. This leads to the necessity of increasing more the yield to compensate 

the SOC losses. The decrease in yields found by Müller & Robertson (2014) has high spatial variability. 

This variability could be explained by local-scale variables including the current SOC stock, soil clay 

content, mean annual temperature and precipitation (Wang et al., 2016), as well as crop type.  

Wang et al. (2016) used RothC in the wheat-growing regions of the world to simulate SOC change in 

the top 30 cm of soil under various types of management. Globally, the average amount of C input 

required to maintain SOC stocks was estimated to be 2.0Mg C ha−1 yr−1 (Wang et al., 2016). This critical 

amount of C necessary to keep the SOC stocks stable to compare with the results previously attained, 

would require the translation into yields. Through the methods developed in this thesis, the C inputs 

required to attain the CC yields to maintain SOC stocks are listed in the Table 5 below accordingly to 

the management practices considered. On this table is possible to assess the global required residues 

results necessary to attain the yield that would minimize SOC losses. It is thus possible to conclude that 

there is a notorious difference between Wang et al., (2016) results (2.0t C ha−1 yr−1) and the ones found 

here (averagely between 0.002t C ha−1 yr−1 and 0.005t C ha−1 yr−1, according to the crop type). That 

difference can be explained by the regions used, because Wang et al., (2016) used only regions where 
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wheat was effectivelly present whilst, in this dissertation, all regions with potential for its cropping were 

used. 

Table 5 - Residues required to attain the computed climate change (CC) yields for wheat accordingly to the 
management practices and CC scenarios. 
Per crop type it is possible to analyze the necessary amount of residues to attain the computed CC yields previously 

shown. It is also possible to assess the average results for ∆yield globally, which translates into the difference 

between the potential yield of a certain region and the required yield to maintain SOC stocks. 

Crop Type 

CC Scenario RCP 8.5 

RCP 4.5 RCP 8.5 

Residues 

 (t ha-1 year-1) 
∆yield (t/ha) 

Residues  

(t ha-1 year-1) 
∆yield (t/ha) 

Irrigated wheat  

with residues left on the field 
0.004 -1.0 0.005 -1.0 

Rainfed wheat  

with residues left on the field 
0.002 0.5 0.002 0.8 

Irrigated wheat  

with residues removed from the field 
0.003 0.2 0.004 -0.3 

Rainfed wheat  

with residues removed from the field 
0.003 0.7 0.004 0.4 

 

3.1.3.1. Comparison of Required Yields for SOC stabilization with current NCC Yields 

Table 6 shows how far the yield required under CC is from the potential. Here it is possible to see the 

number of times that the respective yield (potential and/or NCC) had to be multiplied to achieve the yield 

required under CC to maintain SOC stocks. For that analysis, the yield obtained per CC scenario was 

divided by the potential and the NCC yields. The analysis comparing the CC with the NCC scenario was 

conducted because most of the yields increased when considering CC.  

Between climate scenarios it is necessary to increase NCC yields more for RCP 8.5 (for 55 out of the 

63 crop types under simulation). On average it would be necessary to increase around 27 times the 

yields to reach the ones found required when CC is simulated using RCP 4.5, whilst with RCP 8.5 this 

average increases up to around 32 times (ignoring for the moment the yield gaps). When the analysis 

passes to the comparison of how far required yields for SOC stabilization are from the potential, either 

above or below, the overall results are the same and for the same crop types. That is, when the previous 

ratio was higher for RCP 8.5 than for RCP4.5, the same happens for the ratio considering the potential 

yield. Hence, the same 55 crops present a bigger difference between the potential and the required yield 

when comparing both RCPs. On average, it is necessary to increase 3 times the potential yield for RCP 

4.5, and 4 times when RCP 8.5 is used.  

It is also possible to analyze that when the RCP 4.5 scenario is used, only 13 crop types present a global 

yield below the potential one (presented in Table 6 with a ratio lower than 1). This shows that most crop 

types are not able to maintain their SOC stocks. The number of crop types that present this characteristic 
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decreases to 10 when RCP 8.5 is used.  

Table 6 – Comparison between the different yields: required for SOC stabilization with climate change (CC) under 
RCP 4.5 and RCP 8.5, baseline without CC (NCC) and the potential yield through closure of yield gaps.  
For this analysis a division of the CC yield by the NCC yield was made, as well as a division of the CC yield by the 

potential yield allowing to understand how many times would the NCC yield and the potential yield have to increase 

to attain the required yield under both scenarios of CC. 

Crop Type 

Yield CC / Yield NCC Yield CC / Yield 

Potential 

Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated bananas 11 14 2.7 3.3 

Rainfed bananas 7 8 1.7 1.9 

Irrigated barley 

with residues left on the field 
19 25 1.1 1.5 

Rainfed barley 

with residues left on the field 
21 23 0.9 1.0 

Irrigated barley 

with residues removed from the field 
10 10 1.2 1.3 

Rainfed barley 

with residues removed from the field 
7 7 0.7 0.7 

Irrigated cabbages 74 89 13.2 15.8 

Irrigated carrots 67 76 8.1 9.2 

Irrigated oranges 12 13 2.2 2.5 

Rainfed oranges 7 8 0.9 1.1 

Irrigated coconuts 29 29 6.9 6.8 

Rainfed coconuts 12 13 1.4 1.5 

Irrigated coffee 12 19 2.4 3.8 

Rainfed coffee 0 0 2.2 2.6 

Irrigated cotton 19 28 18.8 27.5 

Rainfed cotton 12 10 8.9 7.6 

Irrigated groundnuts 144 150 5.4 5.6 

Rainfed groundnuts 134 157 3.7 4.4 

Irrigated maize 

with residues left on the field 
24 24 1.5 1.5 

Rainfed maize 

with residues left on the field 
18 20 0.8 0.9 

Irrigated maize 

with residues removed from the field 
7 9 1.3 1.6 

Rainfed maize 

with residues removed from the field 
5 5 0.6 0.6 
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Crop Type 

Yield CC / Yield NCC Yield CC / Yield 

Potential 

Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated palm oil 1 18 1.0 18.0 

Rainfed palm oil 0 0 0.0 1.0 

Irrigated onions 87 104 5.5 6.6 

Irrigated potatoes 21 24 4.7 5.5 

Rainfed potatoes 23 27 4.0 4.7 

Irrigated rapeseed 

with residues left on the field 
37 39 2.8 2.9 

Rainfed rapeseed 

with residues left on the field 
30 36 1.6 1.9 

Irrigated rapeseed 

with residues removed from the field 
62 74 4.7 5.7 

Rainfed rapeseed 

with residues removed from the field 
55 71 2.9 3.8 

Irrigated rice 45 49 4.5 4.8 

Rainfed rice 27 36 2.0 2.7 

Irrigated sorghum 

with residues left on the field 
69 88 2.5 3.2 

Rainfed sorghum 

with residues left on the field 
54 63 1.4 1.6 

Irrigated sorghum 

with residues removed from the field 
9 10 0.7 0.8 

Rainfed sorghum 

with residues removed from the field 
4 4 0.2 0.3 

Irrigated soybeans 84 98 4.9 5.8 

Rainfed soybeans 96 99 3.9 4.0 

Irrigated sugar beet 18 27 12.2 18.0 

Rainfed sugar beet 19 21 7.1 7.7 

Irrigated sugarcane 1 1 2.9 3.1 

Rainfed sugarcane 1 1 1.4 1.8 

Irrigated sunflower 13 13 2.3 2.3 

Rainfed sunflower 18 24 1.6 2.0 

Irrigated sweet potatoes 70 67 5.0 4.8 

Rainfed sweet potatoes 39 47 1.8 2.2 

Irrigated tobacco 31 35 3.0 3.4 

Rainfed tobacco 25 28 1.6 1.8 
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Crop Type 

Yield CC / Yield NCC Yield CC / Yield 

Potential 

Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated tomatoes 31 32 22.7 23.8 

Rainfed tomatoes 23 28 9.7 11.7 

Irrigated wheat 

with residues left on the field 
10 10 1.3 1.4 

Rainfed wheat 

with residues left on the field 
10 9 0.8 0.7 

Irrigated wheat 

with residues removed from the field 
6 7 0.9 1.1 

Rainfed wheat 

with residues removed from the field 
7 9 0.7 0.8 

Irrigated cocoa 0 0 1.8 2.3 

Rainfed cocoa 0 0 0.5 0.3 

Irrigated grapes 9 8 1.2 1.0 

Rainfed grapes 16 19 1.5 1.8 

Irrigated olives 9 10 1.8 2.0 

Rainfed olives 0 0 0.4 0.4 

Irrigated apples 13 17 2.8 3.8 

Rainfed apples 7 9 1.1 1.3 

 

3.1.3.2. Correlation analysis 

The results obtained above were then correlated with temperature and precipitation. The correlation of 

these variables was analyzed using Spearman correlation. It is important to highlight that this correlation 

only states that, in case of a 𝜌 value closer to the unit, in absolute terms, there is a function that is able 

to explain the behavior of both variables under study. This correlation does not state what is the 

relationship between them, for example, if it is a direct connection between the variables. A positive 

correlation coefficient shows that the function found has an increasing monotonic trend meaning that an 

increase in yield differences is associated with a monotonic function dependent of the increase in the 

respective climate variable. When the coefficient has a negative value, it is then associated to a 

monotonic function that explains the behavior of the differences in yield versus climate variable where 

while one of them is increasing, the other is decreasing. 

The relationship between cropland residues and the climate variables was also assessed using the 

same method. The best way to address this topic is through residues as they are directly connected to 

the calculation of yields. As different parameters and different ways to compute yields vary according to 

crop type, the results obtained for yields are not directly comparable. In the case of residues, the results 
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can be compared between crop types because residues are the main C input into the soil that changes 

with CC independently of which crop type is under simulation. The results for the correlation between 

residues and the climate variables for both climate scenarios are presented below as Table 7. 

Table 7 – 𝜌 results from Spearman correlation between crop residues and the climactic variables (temperature and 
precipitation) for both climate change (CC) scenarios (RCP 4.5 and RCP 8.5).  

𝜌 is the correlation coefficient and it varies between -1 (high negative correlation) and 1 (high positive correlation), 

where 0 is no evidence for correlation. The p-values were also assessed. A p-value closer to zero suggests a 

statistically significant correlation between the data sets evaluated. ** - p-values lower than 0.01; * - p-values 

between 0.05 and 0.01. 

 

 
Correlation  

residues-temperature 

Correlation  

residues-precipitation 

Crop Type 

Scenario 

RCP 4.5 

Scenario 

RCP 8.5 

Scenario 

RCP 4.5 

Scenario 

RCP 8.5 

Irrigated bananas 0.08 -0.05 -0.27 0.07 

Rainfed bananas -0.16 -0.29 0.48 0.19** 

Irrigated barley 

with residues left on the field 
0.19** 0.19** 0.19** 0.21 

Rainfed barley 

with residues left on the field 
0.23** 0.18** 0.34 0.30** 

Irrigated barley 

with residues removed from the field 
0.32 0.25 0.15** 0.30 

Rainfed barley 

with residues removed from the field 
0.26 0.11** 0.29 0.37 

Irrigated cabbages 0.34 0.19 0.03 0.20 

Irrigated carrots 0.34 0.38 0.07 0.14** 

Irrigated oranges 0.13** -0.03** -0.12** 0.09** 

Rainfed oranges -0.01 -0.28 0.31 0.19 

Irrigated coconuts -0.07 0.13 -0.28 -0.06 

Rainfed coconuts -0.21 -0.13 0.42 -0.13** 

Irrigated coffee 0.06 0.45 -0.24 -0.36 

Rainfed coffee -0.18 -0.45 0.42 0.35** 

Irrigated cotton 0.09** -0.02 0.07 0.24 

Rainfed cotton 0.00 -0.05 0.30 0.23** 

Irrigated groundnuts 0.26** 0.38 0.18** 0.21 

Rainfed groundnuts 0.27** 0.19** 0.37 0.33** 

Irrigated maize 

with residues left on the field 
0.35 0.25** 0.21** 0.21 

Rainfed maize 

with residues left on the field 
0.24** 0.19** 0.33 0.28 

Irrigated maize 

with residues removed from the field 
0.41 0.25 0.14 0.26 
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Correlation  

residues-temperature 

Correlation  

residues-precipitation 

Crop Type 

Scenario 

RCP 4.5 

Scenario 

RCP 8.5 

Scenario 

RCP 4.5 

Scenario 

RCP 8.5 

Rainfed maize 

with residues removed from the field 
0.24 0.11** 0.32 0.33 

Irrigated palm oil -0.31 0.34 0.36 -0.10 

Rainfed palm oil -0.23* -0.33 0.62 -0.41 

Irrigated onions 0.30 0.17** 0.03 0.12** 

Irrigated potatoes 0.29 0.33 0.24** 0.26 

Rainfed potatoes 0.28** 0.19** 0.37 0.31 

Irrigated rapeseed 

with residues left on the field 
0.25** 0.35 0.16 0.23* 

Rainfed rapeseed 

with residues left on the field 
0.26** 0.16** 0.36 0.32 

Irrigated rapeseed 

with residues removed from the field 
0.27** 0.36 0.17** 0.23 

Rainfed rapeseed 

with residues removed from the field 
0.27** 0.19** 0.36 0.32** 

Irrigated rice 0.24** 0.22** 0.13 0.21 

Rainfed rice 0.25 0.20 0.37 0.33** 

Irrigated sorghum 

with residues left on the field 
0.19** 0.14** 0.22** 0.25 

Rainfed sorghum 

with residues left on the field 
0.24** 0.17** 0.37 0.32 

Irrigated sorghum 

with residues removed from the field 
-0.14 -0.21 0.17** 0.19 

Rainfed sorghum 

with residues removed from the field 
-0.09 -0.19 0.31 0.21** 

Irrigated soybeans 0.30 0.37 0.24** 0.27** 

Rainfed soybeans 0.27** 0.20** 0.36 0.33 

Irrigated sugar beet 0.57 0.38 0.09 0.38 

Rainfed sugar beet 0.43 0.36 0.11 0.15** 

Irrigated sugarcane 0.14** 0.13** -0.35 -0.08 

Rainfed sugarcane -0.09 -0.18 0.24 0.08** 

Irrigated sunflower 0.21 0.16** 0.10 0.39 

Rainfed sunflower 0.20** 0.03 0.29 0.43** 

Irrigated sweet potatoes 0.24** 0.40 0.11** 0.27 

Rainfed sweet potatoes 0.26** 0.19** 0.36 0.32** 

Irrigated tobacco 0.11** -0.02 0.18 0.13 
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Correlation  

residues-temperature 

Correlation  

residues-precipitation 

Crop Type 

Scenario 

RCP 4.5 

Scenario 

RCP 8.5 

Scenario 

RCP 4.5 

Scenario 

RCP 8.5 

Rainfed tobacco 0.05 -0.10 0.33 0.17 

Irrigated tomatoes 0.36 0.24** 0.22** 0.24 

Rainfed tomatoes 0.26** 0.18** 0.36 0.32 

Irrigated wheat 

with residues left on the field 
0.16** 0.15** 0.14** 0.26 

Rainfed wheat 

with residues left on the field 
0.25** 0.17** 0.35 0.31 

Irrigated wheat 

with residues removed from the field 
0.35 0.31 0.06** 0.33** 

Rainfed wheat 

with residues removed from the field 
0.34 0.20 0.23 0.36 

Irrigated cocoa -0.06 0.06 -0.17 -0.09 

Rainfed cocoa -0.02 -0.04 0.55 -0.18** 

Irrigated grapes 0.02 -0.24 0.25 0.21 

Rainfed grapes 0.11** -0.07** 0.23 0.11 

Irrigated olives 0.42 0.10 -0.15 -0.02 

Rainfed olives 0.49 -0.32** 0.19 0.30 

Irrigated apples 0.31 0.19** -0.15** 0.08** 

Rainfed apples 0.04 -0.27** 0.35 0.31 

 

An overall weak, but significant, correlation can be found due to the 𝜌 absolute values. For the RCP 4.5 

and 8.5 CC scenarios, the average 𝜌 are, respectively, for temperature, 0.17 and 0.11, and for 

precipitation 0.20 and 0.19. In this case, a weak correlation means that the variation of the climate 

variables can explain only part of the variance in the distribution of residues between regions. Other 

external factors can be influencing the results. However, as the results obtained for p-value indicate in 

general a statistically significant correlation, temperature and precipitation are in fact important factors 

to explain the amount of residues generated.  

It is possible to analyze which of the climate variables are more correlated with residue production. In 

the case of RCP 4.5, 60% of LU categories (meaning 38 from all 63), have higher 𝜌 for precipitation. For 

5 crop types 𝜌 is negative (production of residues is negatively influenced by precipitation). Under RCP 

8.5, the production of residues is also slightly more correlated with precipitation, as 59% of land uses 

(37 out of the total 63) have a higher 𝜌 for precipitation. Most crop types (59 out of 63) are positively 

correlated with precipitation. This high correlation of precipitation with residues and SOC was also 

studied at a regional level (Hobley et al., 2015), at a global scales (Jobbágy & Jackson, 2000), as well 

as the correlation between SOC residence time and precipitation (Carvalhais et al., 2014). Other studies 
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have reported stronger relationships between SOC with temperature than with precipitation (Allen et al., 

2013).  

The explanation for the higher correlation with precipitation in this study may be the influence that this 

climate variable has on NPP in many ecosystems. Several terrestrial environments are water limited. 

Water limits plant growth and consequentially the input of C into the soil. Humid conditions also favor 

the formation of SOC, stabilizing mineral surfaces through intensified weathering of the parent material 

(Doetterl et al., 2015) and often cause soil acidification leading to reduced decomposition of soil organic 

matter (Meier & Leuschner, 2010). This does not mean that temperature is irrelevant for SOC dynamics. 

Temperature largely affects the microbial decomposition of SOC as its complex molecular attributes 

have a high intrinsic temperature sensitivity (Conant et al., 2011). As shown before, temperature is 

critical for results obtained for overall SOC changes under CC. Although this relationship is governed 

by multiple constraints, numerous studies have indicated a decrease of SOC with increasing 

temperatures (Koven et al., 2017; Smith et al., 2005) generally associated to negative correlations 

mainly due to decomposition of SOC as a response to this trend (Davidson & Janssens, 2006). These 

results, taken in combination, suggest that precipitation is primarily an important driver of C input into 

soil, while temperature is primarily an important driver of C mineralization and loss to the atmosphere. 

3.1.3.3. Yield Evolution for Selected Crop Types 

To analyze the yield data acquired with more detail, the same four crop types from section 3.1.2.1 were 

analyzed. Figure 13 and Figure 14 show the spatial distribution of results for RCP 4.5 and RCP 8.5 

respectively. The figures were elaborated considering the difference between the potential yield 

predicted for a certain region under a determined crop type and the yield required for stabilizing SOC 

when applying different climate scenarios. As previously mentioned, when this ∆yield is negative, it 

means that the necessary yield to maintain SOC stocks from the NCC baseline is higher than what the 

land can potentially give. This case was represented in red and labeled as “Impossible”, because SOC 

loss is unavoidable through increased C inputs into soil. On the other hand, ∆yield can be positive, 

meaning that it is possible to increase the yield, and consequently C inputs, so that its SOC is not lost. 

Those cases are represented in green, having the label “Possible”.  
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Figure 13 – Representation of the ∆yield (difference between the potential yield and the yield required for the 
stabilization of soil carbon under climate change (CC)). 
Here (a) represents rainfed maize with residues removed from the field, (b) rainfed soybeans, (c) rainfed sugarcane 

and (d) rainfed grapes under the CC scenario RCP 4.5. Cases where this variable is negative are shown in red due 

to the impossibility to increase yields to guarantee the maintenance of SOC stocks. Cases when the ∆yield is found 

to be positive are depicted in green and are areas where the loss of SOC is avoidable by increasing yields. 

 

Figure 14 – Representation of the ∆yield (difference between the potential yield and the yield required for the 
stabilization of soil carbon under climate change (CC)). 
Here (a) represents rainfed maize with residues removed from the field, (b) rainfed soybeans, (c) rainfed sugarcane 

and (d) rainfed grapes under the CC scenario RCP 8.5. Cases where this variable is negative are shown in red due 

to the impossibility to increase yields to guarantee the maintenance of SOC stocks. Cases when the ∆yield is found 

to be positive are depicted in green and are areas where the loss of SOC is avoidable by increasing yields. 

 

Table 8 –summarizes the difference in yield between the potential and the required yield to maintain 

NCC SOC stocks results for the selected cropland systems for both climate scenarios, adding also the 

results per region by showing the percentage of regions where it is possible to increase yields in order 
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to maintain the SOC stocks (“Positive Regions”) out of the total potential regions where a certain crop 

type could be harvested. 

Table 8 – Yield results for selected crops under both climate scenarios analyzed (RCP 4.5 and RCP 8.5). 
The analysis involves the difference between the yield necessary for the maintenance of soil organic carbon (SOC) 

where climate change (CC) acts, and the potential one (∆yield). ∆yield is the difference between the potential yield 

(closing yield gaps) and the NCC yield. A positive value denotes cases where it is possible to overcome the loss in 

SOC stocks by increasing yields, and a negative value states the opposite. The percentage of regions with a positive 

∆yield was calculated by dividing the number of regions with a positive ∆yield by the total regions with potential for 

the existence of the crop type under analysis 

Crop Type 

CC Scenario RCP 4.5 CC Scenario RCP 8.5 

Positive 

Regions (%) 

Average 

∆yield (t/ha) 

Positive Regions 

(%) 

Average ∆yield 

(t/ha) 

Rainfed maize with 

residues left on the field 
83 0.9 82 0.6 

Rainfed soybeans 73 -5.0 72 -5.2 

Rainfed sugarcane 43 -0.9 36 -1.5 

Rainfed grapes 59 -0.6 56 -0.9 

 

The most positive result among the selected cropland types was maize. In RCP 4.5 its yield can increase 

in 83% of the potential regions to prevent losing SOC. The difference between the potential yield and 

the scenario with CC is, on average, around 1 t/ha. This number conveys the capacity of this crop to 

maintain its SOC stocks on potential arable lands. In the areas where this cropland cannot avoid the 

loss of SOC, due to the new conditions imposed by CC, the average ∆yield is approximately -14 t/ha. In 

the green areas shown in Figure 13 (a), the average ∆yield can be as high as almost 4 t/ha. With RCP 

8.5, maize is still the strongest crop when compared to the other three. In this case 82% of regions are 

capable of increasing yields to avoid losing SOC. However, the average difference of yields decreases 

to around 0.6 t/ha. This can be explained by the trend shown for extreme negative values: they decrease 

to almost -15 t/ha, meaning that the necessary yield to maintain SOC stocks is increasing more when 

compared to the potential yield of the UHTU. Adding to this is the analysis of the correlation between 

cropland residues and the climate variables. Maize residues are more strongly correlated with 

precipitation in both climate scenarios. The p-value, that translates the not randomness of the data 

collected, is minimum. These findings corroborate the conclusion that the results for maize are mainly 

due to the precipitation evolution in RCP 4.5, and in RCP 8.5, with an increasing trend.  

In the case of soybeans, the result is similar, but with a slight decrease of the percentage of positive 

regions around the globe. This crop is capable to keep SOC stocks by increasing yields in 73% of all 

land where there is potential for its cultivation for RCP 4.5 and 72% for RCP 8.5. The decrease can be 

seen in the existing ∆yield between potential and calculated requirement. In the RCP 4.5 case the ∆yield 

is, on average, approximately -5 t/ha, whilst in the RCP 8.5 scenario this value decreases to around -5 

t/ha. This slight decrease is not visible through the number of regions, neither from changes in extreme 

values. For this crop type the results previously identified are not observed in the extreme values, where 



48 
  

the minimum increases slightly and, in the areas where there is potential for increasing yields, this 

capacity is similar for both RCPs. Regarding Spearman’s correlation, it is possible to see higher and 

statistically significant precipitation correlations with both RCPs. It is possible to conclude that the 

cropland’s residues evolution is also dependent on changes in precipitation for both CC simulated 

scenarios.  

As previously seen for SOC and yield results, the case of sugarcane is worrisome. Here only 43% of 

potential regions are able to increase yield to keep SOC stocks with the RCP 4.5 CC scenario. This 

represents an average ∆yield of -1 t/ha, showing that in areas where it is impossible to avoid losing 

SOC, the difference in yields is only slightly negative even though the extreme negative value can reach 

-4 t/ha. In the UHTUs where the necessary yield to keep SOC stocks is still below the potential one, 

∆yield can be only 3 t/ha. This explains why, even though it is not present in many regions, it does not 

have a more negative global ∆yield . With the RCP 8.5 scenario, the value around the world decreases 

in number of regions, down to 36%. Its average ∆yield also decreases to -2 t/ha, which can be explained 

by the abrupt decrease in the extreme negative value that reaches -6 t/ha. The positive values remain 

in the same order of magnitude of the previous scenario with a slight increase. Regarding the 

Spearman’s correlation of residues with the climate variables it is possible to see that in RCP 4.5 the 

precipitation is the one with higher absolute 𝜌, whilst in RCP 8.5 the residues’ evolution is more 

dependent on temperature. The first case shows a positive correlation. For the second CC scenario 

applied the correlation is negative. Adding to this fact, the values calculated to p-value show that the 

correlations are statistically significant. 

For the grapes’ case, it is possible to see that 59% of the regions enable the increase of yield to maintain 

SOC stocks. Like all other previous cases, RCP 8.5 does not favor this culture that sees its positive 

regions down to 56%. The global average for the ∆yield follows the already addressed decreasing trend 

according to the CC scenario. This is not only due to the reduction of regions where the loss of SOC is 

preventable, but also from the increase gap between the potential and the required yield under CC. The 

negative extreme values are -5 t/ha and -6 t/ha in RCP 4.5 and RCP 8.5, respectively. Regarding the 

positive interval, the value is approximately the same for both scenarios. Through the Spearman’s 

correlation results it is possible to conclude that grape residues, under RCP 4.5 scenario and RCP 8.5, 

are positively correlated with precipitation.  

3.1.4. Overall Assessment 

An overall assessment can be made for all the highlighted crops. For example, rainfed olives were 

highlighted due to being benefitted by expected conditions under CC. This crop also presents a positive 

difference between required yield for SOC stabilization and the potential, showing that an increase in 

productivity is possible. Analyzing the correlation of the climate variables with the residues, it is possible 

to conclude that even though the correlations are higher for temperature for rainfed olives, they are still 

far from a strong correlation. This shows that temperature and precipitation do not influence much the 

behavior of this crop in terms of the level of C inputs into soil. Through the figures presented for the 

differences of temperature and precipitation, it is possible to see that the areas where this crop has 
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potential to grow, the differences are also not particularly significant, showing that the trend presented 

by rainfed olives to potentially capture C from the atmosphere, and its ability to still be able to increase 

its yields, cannot be correlated to the climate variables here studied.  

On the opposite side, irrigated tomatoes show SOC loss if the CC scenarios are used, as well as a 

negative difference between required and potential yields for SOC stabilization. This shows that SOC is 

always lost because the necessary yield to keep it is higher than the potential that the UHTUs can 

provide in most regions. This crop, even though it is spread globally, also shows weak correlations for 

temperature and precipitation with residues. It is possible to conclude that the conditions for the 

settlement of this crop is willing to deteriorate unless some external factor enters in action such as 

fertilization. 

Another case is rainfed sorghum with residues removed from the field. It is possible to see that even 

though the CC scenarios show decreasing SOC stocks, it is possible to stabilize those stocks by 

increasing yields. This happens because the necessary yield is still lower than the potential in most 

regions. Even though the correlations between the climate variables and the residues are weak, this 

crop shows a significant correlation with precipitation in both CC scenarios. By analyzing the 

precipitation figures, a substantial increase is expected in most of the regions where this crop can be 

settled.  

For maize it would be necessary a significant change in yield with CC  in the high latitudes in both rainfed 

and irrigated areas (Müller & Robertson, 2014). Maize is expected to lose more than half of its current 

suitable area in Andean-Amazon foothills (Beltrán-Tolosa et al., 2020). Scenarios for the future also 

project a loss of climate suitability areas for maize in Sub-Saharan Africa, but an expansion in Europe 

(Ramirez-Cabral et al., 2017). The projected increase in temperatures could have a critical negative 

impact on this crop’s production because higher temperatures lead to reductions in the crop life cycle, 

light interception, growing season, grain-filling period, and fertility (Tripathi et al., 2016). This crop is then 

presented as having a high risk of exposure to CC, where exposure is defined by the IPCC as “the 

presence of people’s livelihoods, environmental services, infrastructure, socioeconomic or cultural 

assets in places that could be adversely affected by physical events” (Field et al., 2012), making both 

temperature and precipitation limiting factors for growing maize in areas of low suitability (Beltrán-Tolosa 

et al., 2020). 

 

3.1.5. Regional Analysis 

The changes in climate are what controls the results presented here. It is then possible to see that the 

main results were dependent on the main climate areas that form the planet Earth. After the selection 

of representative crop types, maps were drawn and patterns identified, for example in Figure 13 and 

Figure 14.  

The climate areas can be characterized as being tropical, temperate, boreal, and polar. In general, the 

temperate and tropical areas known for a moist climate can maintain their yields under CC without major 
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losses of SOC, whilst the dry areas cannot. It is important to consider that the majority of Earth’s desert 

areas were excluded from the analysis, as were the polar zones and part of the tropical dry areas (for 

example the Sahara Desert in Africa and the Great Sandy Desert in Australia).  

Starting from the North of the globe, the first climate area present is boreal. In terms of yield, it is possible 

to conclude that where there is not potential for the maintenance of SOC stocks by increasing yields, 

like rainfed maize and soybeans. This mainly happens in parts of Russia, China, and Canada. In boreal 

regions, nowadays, the growing season over all stages of phenology is usually too short for cultivation 

(Ramankutty et al., 2002). The future for these areas, however, shows different possible outcomes. On 

the one hand, with the warming, induced soil C losses through mineralization are expected, which has 

the potential to lead to a stronger insulation of the soil in the winter and to increase soil temperatures, 

favoring the melting of permafrost (Gouttevin et al., 2012). Under the climate projections, it is then 

expected wetter areas in the boreal zone will increase (Bond-Lamberty & Thomson, 2010). This affects, 

consequentially, the respiration rates in high latitude ecosystems, considered to be the largest global 

relative change, consistent with the large C stocks in these areas (Bond-Lamberty & Thomson, 2010). 

All of this is likely to occur in Arctic and subarctic regions, where the potential to offset these vegetation 

responses is high (Crowther et al., 2016). On the other hand, there are predictions that show increases 

in SOC at high latitudes, presumably due to the increases in plant productivity (Koven et al., 2017), as 

well as the growing season productivity (Monson et al., 2006). The results here obtained show that the 

yield necessary to cultivate the four representative crop types is higher than the potential for those 

regions, which is the reason why they are in red in Figure 13 and Figure 14. An important result is that 

boreal areas can become an important C input for the atmosphere, representing a positive feedback for 

CC. 

Regarding temperate regions it is possible to see optimistic results especially for rainfed maize and 

soybeans in Europe with some differences when the Asian continent is reached. For the Asian continent 

the maintenance of SOC stocks with yield increment starts to be impossible. In North America, it is 

possible to see that the areas under a moist temperate climate, from Michigan State to Alabama and 

from North Carolina to Missouri, have the a positive ∆yield while the Western areas, considered to have 

a dry temperate climate, have a negative ∆yield.  

Tropical wet and moist regions present positive ∆yield throughout the globe for the crops under analysis 

apart from rainfed sugarcane. This crop, as previously mentioned, is one of the most impacted crops 

out of the 63 studied. North America near the states of Florida and Louisiana, and in Central Africa near 

Democratic Republic of the Congo, are exceptions. The variable ∆yield is positive showing a contrast 

between these regions and the tropical dry region. On the tropical dry regions, the conclusions are 

completely different since the necessary yield to maintain the SOC stocks increases so much that it 

surpasses the potential yield that the land can provide. Currently, in the inner tropics, the adequate 

temperature and moisture is present throughout the year, but soil quality often restricts cultivation due 

to low organic content (Ramankutty et al., 2002). One possible reason to explain this behavior is the 

need that this culture has to go long times with water availability and a specific temperature range (Silva 

et al., 2020). With the increase of climate extremes this may be compromised. Another reason may be 
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its necessity for supplements, such as fertilizers (Václavík et al., 2013), which is not being simulated 

here.  

The difference between temperate and tropical regions comes from the fact that temperate zones have 

seasonally adequate temperatures and enough precipitation and often sufficient soil, while in subtropical 

regions the annual distribution of precipitation strongly determines crop growth (Ramankutty et al., 

2002). Mediterranean areas and subtropical ecosystems are already shaped by strong seasonality of 

water availability (Zabel et al., 2014). Changes in precipitation patterns with longer dry periods and more 

intense precipitation events are very likely (Seneviratne et al., 2012) to affect croplands and its 

production capacity as seen on the Figure 13 and Figure 14. In the tropics, susceptibility of the carbon 

cycle to climate extremes will strongly depend on the interaction with human drivers (Frank et al., 2015) 

such as fertilizers and irrigation. The most sensitive regions with decreasing suitability are found in the 

Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases (Zabel 

et al., 2014). 

The particular case of Africa is that about 20% of the agricultural suitable area is currently not used for 

agriculture or is statistically not recorded in the data of currently used as agricultural land (Ellis & 

Ramankutty, 2008). The data used here shows that there is extraordinary potential for Sub Saharan 

Africa for future expansion of agricultural land, especially in central areas (Zabel et al., 2014). This shows 

the extraordinary potential of Africa for future expansion on agricultural land (Zabel et al., 2014). The 

expansion of croplands would, however, always take place with ecological costs like the conversion of 

grassland and savannah (Zabel et al., 2014) to agricultural fields.  

3.1.6.  Increasing Yields Through Fertilization  

The regions where it is still possible to ensure the maintenance of SOC stocks by increasing its yields 

and C inputs into soil were the subject of a deeper analysis. For these regions it was evaluated what 

impact would arise by increasing yields using fertilization. The impact of fertilization was quantified using 

the CO2eq emissions due to their production and application on the field. The required increases in yields 

previously calculated necessary to maintain the SOC stocks from the NCC baseline in cases under CC 

were converted to their N content. It was assumed that the increase in N in biomass must be provided 

by fertilization and studied the case of mineral fertilizers only. With this conversion it was possible to 

compare the emissions of increasing the yield on the crop types per region, which are the emissions 

from fertilizer production and application, with the SOC that would have been depleted throughout the 

87 years of simulation in case of no yield increase. The results of this analysis are in Annex IV.  

The regions where the increase of CO2eq emissions due to the additional required fertilizer use is lower 

than the loss of CO2 due to SOC’s depletion under CC, were labeled has “positive regions” and the 

analysis was conducted per region and per crop type. The accumulated balance per region type was 

made subtracting ∆SOC and the sum of all the emissions from the N-fertilizers’ application at the regional 

level for the 87 years. For the emissions per crop type, a sum of the emissions per regions was made. 

Afterwards, per crop type a regional average was made where the sum of the emissions per crop type 
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was divided by the number of regions where it was still possible to increase yields (because it is still 

lower than the potential). 

The results show that only 17 for RCP 4.5, and 13 for RCP 8.5, out of the 63 crop types under analysis 

have a positive emissions’ balance, i.e. it is preferable to intensify cropland production to the extra 

production of residues despite emissions from increased fertilizer production and application. This 

means that strategies proposing the closure of yield gaps, despite potentially being positive for SOC 

conservation, may backfire due to the emissions from fertilizers used to increase yields. It is also shown 

that increasing yields would mean to increase CO2eq emissions between 37 and 21,000 t CO2eq.year/ha 

for both RCP’s when the average per region was made, for the entire 87 years analyzed according to 

the crop type. This analysis is dependent on crop types and it is important to highlight that there are 

crop types that have a positive balance. These crop types show that between 32 and 1,525 t 

CO2eq.year/ha can be avoided through intensification. It is interesting to highlight that even though RCP 

4.5 has more crop types where the balance between emissions with fertilizers, and without, contributes 

more towards a negative feedback to CC, it is for RCP 8.5 that average emissions are lower. This 

happens because under RCP 8.5 there are more regions and crop types where the loss of SOC stocks 

is unavoidable. This means that they do not enter this simulation. As the difference in yields is not highly 

significant, by having less regions count towards the average, under RCP 8.5 the emissions using 

fertilizers are less impactful. 

The crop type that has the worst performance regarding the introduction of fertilizers under the influence 

of RCP 4.5 is irrigated maize with no removal of residues (where the average emissions per region of 

CO2eq is around 21,000  t CO2eq.year/ha) and, for RCP 8.5, it is irrigated soybeans (where the average 

emissions per region of CO2eq was around 17,000 t CO2eq.year/ha). These two crop types, in the yield 

analysis, showed that most of the regions (71 and 72%) were able to avoid losing SOC stocks by 

increasing yield. These results now show that the use of mineral fertilizers cannot be the solution due 

to the emissions’ increase when compared to the loss of SOC stocks. Rainfed sweet potatoes, for both 

RCPs, is the crop type with the most positive result. Using fertilization to increase yields avoids the 

emission of 1,500 t CO2eq.year/ha under RCP 4.5 and 1,300 t CO2eq.year/ha for RCP 8.5 when the 

average per region is made. Previously, on the analysis of SOC stocks, the loss was around 25% of its 

global SOC stocks. This crop type also showed that most of the regions (76 and 73%) could increase 

their yields to guarantee the maintenance of baseline SOC stocks.  

Optimizing the N-inputs in agroecosystems may be an effective strategy for reducing GHG emissions 

and improving C sequestration (Jiang et al., 2019), but only in some regions and for some crop types. 

For example comparing the results from the cropping of rice in two different provinces of China, in one 

of them the use of N-fertilizers increased the C-footprint (Jiang et al., 2019) whilst the other was a C-

sink (C. Li et al., 2019). These results strongly suggest that the use of intensification strategies towards 

the closure of yield gaps should weigh possible rebounds such as the fact that more C may be emitted 

simply from producing fertilizers than accepting the loss of SOC, besides other negative effects of 

excessive N input on GHG emissions. Management strategies should be reexamined in relation to crop 

production and GHG mitigation. 
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3.1.6.1. The Effects of Intensification for Selected Crop Types 

To compare previous results for the 4 selected crops, Table 9 was elaborated. The evolution of ∆SOC 

(which is the difference between the accumulated SOC from the CC scenario and the NCC one 

throughout the 87 years of simulation), ∆yield (the difference between the potential yield predicted for a 

certain region under a determined crop type and the yield calculated when applying different climate 

scenarios) and finally the results obtained for the fertilizer’s’ application are here summarized. The 

calculation of the average regional balance between fertilizer use and potential SOC depletion was 

calculated only for regions with positive ∆yield even when the global average ∆yield is negative for that 

crop. 

Table 9 – Accumulated emissions of N-fertilizers’ production and application for certain crop types under the 
influence of both climate change (CC) scenarios (RCP 4.5 and RCP 8.5) for the 87 years of simulation. 
The variable ∆SOC is the difference between the accumulated SOC under CC and NCC, showing a positive value 

when an increase in SOC stocks occurs, and a negative value where SOC is lost. The variable ∆yield states the 

difference between the potential and the required CC yield, showing a positive value when it is possible to overcome 

the loss of SOC by increasing yields, and a negative value affirms the opposite. A balance of CO2eq emissions using 

N-fertilizers per crop type was made to assess the overall balance per crop type (adding all the avoided emissions 

from SOC stabilization previously calculated and subtracting the sum of the emissions from the use of fertilizers for 

all regions) and per region (dividing the previous sum by the total number of regions where the CC yield was lower 

than the potential yield). When a positive value is found the increase in yields avoids more emissions than the 

additional emissions due to N-fertilizers. 

Crop Type 

CC Scenario RCP 4.5 CC Scenario RCP 8.5 

∆SOC  

(t C/ha) 

∆yield 

(t/ha) 

Average Regional 

Balance 

(tCO2eq.year/ha) 

∆SOC  

(t C/ha) 

∆yield 

(t/ha) 

Average Regional 

Balance 

(t CO2eq.year/ha) 

Rainfed maize 

with residues 

left on the field 

-498 0.9 -3,481 -540 0.6 -5,217 

Rainfed 

soybeans 
-708 -5.0 -2,622 -754 -5.2 -14,888 

Rainfed 

sugarcane 
-1,148 -0.9 1,287 -1147 -1.5 -1,947 

Rainfed grapes -336 -0.6 -1,630 -365 -0.9 -599 

 

Maize is the only crop on the previous table that has a positive global average ∆yield for both CC 

scenarios. This demonstrates the possibility to use the increment of yields to avoid the SOC loss. 

However, the application of N-fertilizers, and therefore an intensification of this crop, is globally on 

average worse. As Table 9 shows, the application of fertilizers is prone to contribute to a rebound for 

this crop type as the CO2eq emissions would increase by using them in comparison to allowing SOC to 

be depleted. 
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Sugarcane was previously identified as one of the crops that would suffer the most from SOC loss 

globally. This statement is due to the negative ∆yield presented, which shows that the required yield to 

not lose the SOC stocks is already higher than the potential one. However, in the UHTUs where ∆yield 

is positive, the application of fertilizers would result in less CO2eq emissions than emissions from SOC 

mineralization due to CC without intensification. 

Soybeans and grapes have similar results. These crops are subject to the loss of SOC, as well as a 

global negative ∆yields. This negative ∆yield shows that, in general, the required yield to avoid losing 

SOC is already higher than the potential. Even in regions where ∆yield is positive, the use of fertilizers 

to increase yields would never be worthwhile as it generates an increase of CO2eq emissions when 

compared to the potential loss of SOC. 

3.1.7. Main Limitations 

Some limitations were found for the work here developed. It is important to highlight how unpredictable 

the evolution of CC may be. All variables accounted for the RCP’s formulation can take different paths 

according to not only agreements done between countries (like the Kyoto Protocol or Paris Agreement), 

but also the feedbacks that nature can give locally. Nature is then one of the biggest uncertainties 

identified and, consequently, the patterns of precipitation and temperature can be completely different 

from the ones used here. As a result, conclusions taken from SOC and yield trends can only be 

considered a possible path if the climate trend is like the one considered here.  

Regarding the simulation per se, there are multiple improvements that could be done to achieve results 

closer to reality. For example, the effect of soil type on yield and mineralization should be introduced 

into the model. It is known that different soil types retain differently water, organic matter, important 

minerals and gases for plants development (Bruun et al., 2015) which can have a significant impact on 

SOC stocks and, consequently, on yields. This would require using models that simulate more 

processes than RothC or expanding the current version of this model. 

In terms of crop types, only croplands were considered and not forests and grasslands. Forests are 

important both in terms of aboveground carbon stocks and carbon uptake (Frank et al., 2015). The future 

path that they will take in terms of SOC is, then again, uncertain. They can either have the largest net 

effects on the terrestrial carbon balance compared to other ecosystems (Frank et al., 2015) because 

they have large SOC stocks, or forested areas can be less impacted by CC in terms of SOC stock when 

compared to agricultural lands (Caddeo et al., 2019) due to mainly multicultural systems (Jarecki & Lal, 

2003). The doubt is the same as with agricultural lands, but, as previously seen, it depends on the site 

under study, the climate zone and the meteorological activity, as well as the fertilization (Prietzel et al., 

2016). Despite the increased pressure for resources represented in all future scenarios, future increases 

in agricultural land and decreases in forest area may be avoidable because is now known that additional 

agricultural land use can reduce carbon storage and reduce forest habitat for biodiversity can have other 

negative impacts on ecosystem services (Sala et al., 2000). Potential reductions in agricultural land and 

gains in forest could do the opposite (Pereira et al., 2010).  
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As croplands are the only land use under simulation here, two other limitations arise: the missing 

fertilization scenarios and management techniques. In croplands, many climate extreme impacts can 

theoretically be mitigated through management. Even within the same year, for example increased 

irrigation may enhance root biomass production, microbial activity and erosion rates, leading to 

increased or decreased SOC stocks (Reichstein et al., 2013) depending on which process has more 

significance. It can also be done through longer term adaptation, using, for example, drought- and/or 

heat-resistant cultivars (Frank et al., 2015), or regular harvesting and soil treatment makes long-term 

biological legacy effects of climate extremes more unlikely than in forests or grasslands (Reichstein et 

al., 2013). The extent of human interventions present another great uncertainty in assessing the impact 

of climate on the carbon balance of croplands (Porter & Semenov, 2005). 

As humanity and its needs are increasing at a high rate (Alexandratos & Bruinsma, 2012; Pugh et al., 

2016), LUC is happening constantly and, therefore, it can have an impact on the results here presented. 

However, future LUC scenarios under CC for the evolution of individual crops were unavailable at the 

time that this thesis was written, which is the reason why it is not contemplated in this study. But, has 

previously mentioned, it can have a serious impact on the overall C budget for the planet Earth. 

After the understanding that the climate variables trigger drastic changes in SOC dynamics, there was 

the necessity to understand what stabilization of SOC could mean. As previously mentioned, three 

different ways were tested but only one, the test done using the approach that computed SOC using the 

integral (i.e. equalization of average SOC across the 87 years), produced results. This happened 

because the algorithm developed here was unable to find a solution due to the regressive yearly 

adjustment where the objective was to see how the curve from SOC would adjust if the SOC in the year 

2100 was equal to the NCC scenario. In the case of the yearly adjustment this was unrealistic due to 

the existence of a wide difference between SOC in the NCC scenario and the calculated SOC under 

CC. The approach considered more accurate, due to the minimal differences between the baseline 

scenario and the predicted one, was the first mentioned. This is a limitation because a comparison 

between methods would enrich the analysis. 

The understanding of the influence of climate variables on the results faces also a limitation. The method 

chosen to assess the relationship between the climate variables and the evolution of yield gaps, and 

residues, was the Spearman correlation. The limitation arises because crop-specific parameters and 

calculation methods were used, meaning that the results obtained for yields are not directly comparable. 

In the case of residues, the results can be compared between crop types because these represent the 

C that enters directly into the soil, independently of which crop type is under simulation. Therefore, a 

direct conclusion about the influence of climate in yield gap was not attainable. 

Another aspect is the fact that results cannot be fully analyzed by region due to the extensive research 

area and division in approximately 17,000 UHTUs. Certain regions with micro-climates can see their 

results diluted in the trend presented by the majority.  

Discussing now more technical issues, the validation of RothC for 2100 can be questioned considering 

that it was calibrated for the early 2000’s. The same happens for water needs calculation where the 
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coefficient kc is constant from 2005 to 2100, even though some crops may be modified and change this 

parameter throughout the years to readjust their necessities. The choice to keep it constant was made 

so that all scenarios could be comparable (NCC, RCP 4.5 and RCP 8.5), changing only precipitation 

and temperature. As the uncertainty about CC is a parameter that cannot be dissociated from the 

analysis throughout this work, it is important to highlight that some regions may keep their climate 

conditions when subjected to all three simulations. As a conservative measure, the approach of 

maintaining the calibration and the coefficient equal from early years until the end of the simulation was 

considered the most suited for the case under study.  

3.1.8. Future Work 

For future approaches to the same topic, the limitations identified should be introduced into the model 

chosen to perform the simulation which will probably require more detailed and advanced modelling. 

Regarding CC, a clear definition of the extreme conditions should be set (e.g. by a return interval), a 

consistent classification of resulting extreme impacts, in particular, indirect effects need to receive 

increased atention given the complexity of the mechanisms involved and the lack of current studies 

(Frank et al., 2015). The research should also be encouraged to characterize a broad range of possible 

future climate conditions giving more attention to evaluating adaptation needs and strategies, exploring 

mitigation options, and improving understanding of potentially large feedbacks (that is, impacts of CC 

such as melting of permafrost or dieback of forests that cause further changes in climate) (Moss et al., 

2010). 

The expansion of agricultural land into forested or protected areas must be viewed critically, in order to 

conserve valuable ecosystem services like for regulating climate or conserving biodiversity (Tilman et 

al., 2011). LUC should be taken into consideration not only because of the dynamics of afforestation 

and deforestation, but also because there may be transformations of cropland between crop types. As 

shown here, different crops can have drastically different patterns of SOC dynamics, which means that 

“agriculture” should not be considered a homogeneous class in any future modelling studies. 

Here it was shown that, when SOC is considered, there will be a greatly reduced capacity to intensify 

crop production beyond current levels through efforts to close the yield gap on existing croplands. 

Intensification of production on current croplands appears highly unlikely to be able to meet growing 

global demand over the next decades without further emissions. Highly developed countries, where 

yield gaps are already very small, may face difficulties in sustaining current production without new 

technological interventions to increase attainable yield, for example, breeding novel crop cultivars 

(Licker et al., 2010; Pugh et al., 2016).  

Providing strategies and incentives for the adoption of the recommended management practices to 

increase crop yield could enhance food security and contribute to climate equity while increasing 

croplands SOC and mitigating climate change (Lal, 2004), which has been shown to have positive 

results in China (Deng et al., 2017; Fulu Tao et al., 2019; Zhao et al., 2018). For this purpose, the overall 

sustainability assessments concerning management practices aiming for SOC accumulation in 

croplands are needed (Fulu Tao et al., 2019). Practices for SOC accumulation should be implemented 
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to improve the inherent soil yield, while nutrients input or fertilization management should be adjusted 

in accordance with the temporal and spatial changes of SOC in recent decades to optimize fertilizer 

application (Fulu Tao et al., 2019). Application of fertilization should be optimized to increase crop yield 

while minimizing environmental cost (Zhang et al., 2016) because, even though fertilizers are needed 

to increase food production, a growing concern is arising from the impact of industrial N-fertilizer 

production. It has become difficult to ignore the impact associated to global warming that this industry 

has. Almost all N-fertilizers are fixed on a large scale using the Haber-Bosch (H-B) ammonia synthesis 

process via reaction of N with hydrogen in the presence of a catalyst (Riesbaum et al., 2012). This 

process consumes approximately 1–2% of the world’s total energy, and emits 830 megatons of CO2 

annually (IEA, 2019), hence a decarbonization of this process should be assessed. If the production of 

fertilizers was fully decarbonized, then results presented here would change as the additional emissions 

from fertilization would be zero, and therefore avoiding emissions from SOC depletion would always be 

a climate-positive measure. 
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3.2. RothC Calibration for Portuguese Unfertilized Pastures 

3.2.1. Parameter Analysis 

From Figure 15 it is possible to see all parameters (RS ratio, time fraction, LI and DPM/RPM ratio) found 

from all 100 iterations made by the model for unfertilized pastures and, in Figure 16, the results for the 

same parameters for fertilized pastures. The “best” value of each parameter, namely the one with the 

lowest score, is highlighted in orange. That set is the one that minimizes the imposed stopping 

conditions. For RS, the results are approximately 3.2 and 2.3, 0.49 and 0.51 for time fraction spent per 

LstU, 0.6 for LI and 1 for DPM/RPM ratio, respectively for unfertilized and fertilized pastures. This set of 

parameters obtained the lowest score, close to 0.2. 

 

Figure 15 – Results obtained iteratively for the variables root to shoot (RS), time fraction spent by the livestock (t), 
livestock intake (LI) and the ratio between easily decomposable and resistant plant matter (DPM/RPM ratio) as a 
function of the score.  
This score depicts how far the error function was from the minimization criteria, for the unfertilized pastures. The 

set of parameters marked with an orange circle was named “best set” because it was the one that presented the 

lower score. 
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Figure 16 – Results obtained iteratively for the variables root to shoot (RS), time fraction spent by the livestock (t), 
livestock intake (LI) and the ration between easily decomposable and resistant plant matter (DPM/RPM ratio) as a 
function of the score.  
This score depicts how far the error function was from the minimization criteria, for the fertilized pastures. The set 

of parameters marked with an orange circle was named “best set” because it was the one that presented the lower 

score. 

The 100 iterations show a wide range of results, as well as a wide range of scores. For the case of the 

RS ratio, the values for this parameter are comprised within the interval of 2.6 up to 3.2 for unfertilized 

pastures and around 2.3 and 3 for fertilized pastures. Regarding the time that the animals spend on 

each plot, the values range around 0.5 for unfertilized pastures and fertilized pastures. LI, for unfertilized 

and fertilized pastures respectively, is within the following intervals: from around 0.4 to 0.6, and from 

around 0.5 to 0.6. DPM/RPM ratio varies around 1 and 1.03 in the unfertilized pastures and fertilized 

pastures. Scores varied around 0.2, being the best score equal to 0.19. 

The estimated parameters for each pasture type show a small dispersion when it comes to score, which 

is a good indicator of the method’s accuracy. The existence of outliers can have several reasons. One 

of reasons is the fact that the data set for the estimation of parameters is relatively small. This can lead 

the model to make mistakes when minimizing the stop condition. If a local minimum is found, as the 

value is lower than the neighbors, the model is unable to exit this cycle and this set is considered to be 

one of the final possibilities, even though its conditions are far from the absolute minimum. Another 

possible explanation can come from the attribution of random numbers to initialize the iterations’ loop. 

This may lead to sets of data that are not precise. In terms of the parameters’ value per se, it is possible 

to evaluate that the changes that occur between iterations have a small dispersion also. This dispersion 

occurred for both pasture types and it is in the order of the decimals. The type of dispersion is different 

from parameter to parameter. For example, for the parameter LI the “best score” is in the middle of the 

variation range of the parameter, something that does not happen for DPM/RPM ratio. This means that 

the initialization provided by the function was farthest from the place where the stop condition was 

minimized for the DPM/RPM ratio’s case.  
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When comparing both pastures under analysis, it is possible to infer that the RS ratio is more than one 

third higher for unfertilized pastures than in the fertilized ones. The result of approximately 3 for 

unfertilized pastures and 2 for fertilized pastures places these pastures between the category of 

“temperate grasslands” (4.224) and the “tropical/sub-tropical grassland” (1.887) according Mokany et 

al. (2006). Plants with a higher proportion of roots can compete more effectively for soil nutrients, while 

those with a higher proportion of shoots can collect more light energy. A correct utilization of fertilizer 

can increase pasture production, improve pasture quality, increase seasonal pasture availability, 

improve tolerance of pastures to grazing and drought, reduce weed levels due to pasture competition, 

improve pasture water use efficiency and potentially increase stocking rate help to reduce runoff and 

erosion, amongst many other advantages (Havilah et al., 2005). This happens because, for optimum 

pasture growth, all essential nutrients must be present in the sufficient amounts. If any nutrient is 

deficient, pasture growth is limited by this deficiency, even if all other nutrients are in abundance (Havilah 

et al., 2005). The fact that fertilized pastures had a lower RS can mean that, because N was provided, 

the plant did not need to develop their root systems as much to access N from the soil. 

LI was the same for both pasture systems, around 0.6. For this simulation, the same animals were 

grazing in both plots it is then normal that the intake is the same. The difference could come from the 

time they choose, or are obliged, to spend in each type of pasture.  

The fraction of time that each LstU spent in the fertilized fields is slightly higher (0.51) than in the 

unfertilized ones (0.49). This can occur because, as mentioned previously, fertilized pastures can have 

reduced levels of weeds and more grass production. The animals may then prefer to spend most of their 

time at a field where their needs are suppressed more easily due to the higher availability of grass per 

unit area. 

For the DPM/RPM ratio, the value is approximately the same for both type of pastures (around 1 for 

both). The explanation for this can come from the presence of the same species on both pasture types 

even though the management choices applied to the fields are different. The ratio between easily 

decomposable and resistant plant material can be kept approximately the same consequently. The 

results are close to the default for croplands and improved grasslands, which is equal to 1.44 (Coleman 

et al., 2014). 

The results obtained by Morais, et al. (2018), using the same methodology, for a specific type of 

improved grassland, namely sown biodiverse pastures rich in legumes, reached values that 

corresponded to a “temperature arid shrubland” (an RS ratio and DPM/RPM ratio approximately equal 

to 1, and the LI equal to 0.6). Some important differences between that study and this thesis are 

important to point out. Morais, et al. (2018) used 8 farms to parametrize the variables which are more 

spread across the Mainland Portugal than the four here presented (where only one can be considered 

as a spatial outlier). The original data was available for 5 years, whilst here, for the parametrization, data 

was collected from only 3 years, and only 1 year was used for the model’s calibration and two for 

validation. Besides these reasons, the animals involved in both studies were different for both studies. 

If all of this is weighted and considering that the pasture systems were different, the discrepancies in 

values are acceptable and justifiable.  
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3.2.2. SOC Results 

When using the highlighted set of parameters, SOC was calculated for all farms and pasture types in 

order to get a sense for the estimation errors. The results can be found in Figure 17. Here it is possible 

to see that there is a slight underestimation of SOC contents.  

Legend:  

 

Figure 17 – Comparison of the predicted soil organic carbon (SOC) stocks obtained (marked with a black star) using 
the best set of parameters identified previously with the measurements made in situ (marked with an orange circle), 
for both pasture systems in 2003 and 2004. 

 

        Unfertilized Pastures          Fertilized Pastures 
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The results show, considering farm 4 as an exception, that all SOC stocks increased from 2003 to 2004. 

Farm 4 was the exception because, even though the estimated SOC values are increasing, that trend 

is not followed by the measurements done in situ. This decreasing trend can occur due to the higher 

temperatures registered in the south of Portugal. This increase in temperature can be responsible for 

the acceleration of the SOC’s decomposition processes. This was not foreseen by the model because 

all other farms see its stocks increasing.  

Comparing both pasture types, it is possible to see that the SOC results are higher for unfertilized 

pastures than for fertilized ones. Some reasons can be pointed such as the fact that the RS ratio is 

higher on natural pastures. Abundant roots and litter significantly affect soil porosity, SOC, and other 

soil properties (Wu et al., 2010, 2016). Fine roots decompose significantly faster than coarse roots 

(Zhang et al., 2016) leading to the increase in SOM. Roots also favor the formation of soil pores, which 

influences soil properties due to change in burrowing activity and biomass of earthworms (Fischer et al., 

2014) resulting in more abundant SOC. Also, the type of fertilizer used, the amounts and if it was 

provided in the right period to guarantee that it was not completely washed out or to avoid its percolation 

into the soil. These results are opposite to what was observed in China (Du et al., 2020; Lu, 2020) when 

comparing natural and fertilized pastures. As grasslands have so many variables to consider, this 

divergency can be explained because of climate, fertilizer used, management options, climate, and 

grazing. The extrapolations and comparisons between different case sites are, thus, hard to make.  

The following Table 10 shows the results from the calculated and measured in situ SOC stocks for the 

respective farm in each year. The difference was analyzed through the variation column that states the 

difference between the estimated and the measured SOC, dividing by the measured one. With this 

approach it is possible to assess if the SOC calculated is an underestimation or an overestimation, as 

well as the percentage of this discrepancy. 
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Table 10 – Comparision between the estimated soil organic carbon (SOC) and the measured SOC for the 4 farms 
under analysis.  
A percentual variation was also assessed as the difference between the estimated and the measured SOC, dividing 

then by the measured one. 

  
2003 2004 

Estimated 
SOC  

(t C/ha) 

Measured 
SOC  

(t C/ha) 
Variation (%) 

Estimated 
SOC  

(t C/ha) 

Measured 
SOC  

(t C/ha) 

Variation  
(%) 

U
n
fe

rt
ili

z
e
d

 

Farm 
1 

27 24 
10 

(3 t C/ha) 
30 36 

-18 
(-6 t C/ha) 

Farm 
2 

41 37 
12 

(4 t C/ha) 
44 42 

4 
(2 t C/ha) 

Farm 
3 

8 9 
-8 

(-1 t C/ha) 
9 10 

-2 
(-1 t C/ha) 

Farm 
4 

23 25 
-7 

(-2 t C/ha) 
26 23 

9 
(3 t C/ha) 

Average 
2%  

(1 t C/ha) 
Average 

-2% 
(-1 t C/ha) 

F
e
rt

ili
z
e
d

 

Farm 
1 

23 22 
6 

(1 t C/ha) 
26 32 

-20 
(-6 t C/ha) 

Farm 
2 

38 37 
4 

(1 t C/ha) 
41 44 

-7 
(-3 t C/ha) 

Farm 
3 

6 6 
9 

(1 t C/ha) 
6 6 

3 
(0.21 t 
C/ha) 

Farm 
4 

23 27 
-13 

(-4 t C/ha) 
25 21 

18 
(4 t C/ha) 

Average 
2% 

(-0.3 t C/ha) 
Average 

-2% 
(-1 t C/ha) 

 

The score per farm, using Equation (22), was also calculated and the results are displayed in Table 11 

. The estimated SOC was added for both years and pasture types under simulation, as well as the 

measured one. 

Table 11 – Score obtained for the 4 farms under study, using the approach presented on Equation (22), where the 
soil organic carbon (SOC) stocks calculated as well as the measured ones were added for both years and pasture 
types. 

Farms Score 

Farm 1 0.09 

Farm 2 0.03 

Farm 3 0.01 

Farm 4 0.01 

 

These values are once more corroborating the small differences obtained and re-enforcing the idea of 

the robustness of the method applied.  

Regarding SOC’s estimation, it is possible observe an average underestimation in the order of 1t C/ha 

between the overall estimated and measured values. The highest underestimation found was -7 t C/ha 

for Farm 1 in 2004, and the highest overestimation was 5 t C/ha, corresponding to Farm 2 in 2003.  

• Farm 1: in this farm similar results were found for unfertilized and fertilized pastures. For 2003 

the model overestimates de SOC content in 10% for unfertilized and 6% for fertilized pastures. 
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The opposite happens for the year 2004, where an underestimation of 18% is seen for 

unfertilized pastures and 20% for fertilized pastures. This farm presents an overall 

underestimation in the order of 8%, which in absolute terms corresponds to 10 t C/ha.  

• Farm 2: here an overestimation occurs for the year 2003 in the unfertilized pasture, and the gap 

decreases when the year of simulation is 2004, from 12% to 4%. For fertilized pastures there is 

an overestimation in 2003, in the order of 4%, and an underestimation occurs for 2004, 7%. On 

average, for Farm 2, the trend shows an overestimation of 3%, meaning that there are 5 t C/ha 

in excess. 

• Farm 3: the analysis of this farm’s results for SOC stocks show that for unfertilized pastures an 

underestimation occurs, evolving from 8% to 2% in the years of 2003 and 2004, respectively. 

For the fertilized pastures, there is an overestimation in the order of 9% and 3% for 2003 and 

2004, respectively. This farm then shows an overall overestimation of 1%, which corresponds 

to 0.2 t C/ha.   

• Farm 4: the case of this farm is the exact opposite of what occurs for Farm 1. For the unfertilized 

pastures case an underestimation occurs, in the order of 7%, for the year 2003, whilst, for the 

year 2004, an overestimation of 9% is seen. Regarding fertilized pastures this trend is kept but 

with a different order of magnitude: -13% and 18% respectively for the years 2003 and 2004. 

On average, this farm presents a 1% overestimation, meaning that there are 0.7 t C/ha in excess 

in the estimated SOC values.  

 

The differences between SOC stocks at different farms can be explained by their geographical position 

and their meteorological conditions. The management options done by different landowners can also 

influence the results. It is then possible to understand why it is so difficult to comprehend and explain 

the grasslands’ behavior. As there are a lot of variables to consider, it is still not possible to extrapolate 

results from one farm to the other, or even from one year to another in an exact way. The results obtained 

by simulation, on average, correspond to a 1% difference between the measured and estimated values, 

which in absolute terms correspond to -1 t C/ha on average for all farms. The discrepancy increases 

when each farm is analyzed yearly. 

3.2.3. Main Limitations 

Due to the carbon storage potential, grasslands are getting more and more attention from the scientific 

community. That is the reason why the majority of work developed, and measurements, are done 

primarily with SOM. This variable helps to understand and quantify the amount of carbon sequestration 

potential that a given land has, but it is not enough to explain why this occurs for this specific ecosystem.  

This work helps to fill the gaps in knowledge present in pasture’s modelling studies even though the 

RothC model was developed originally for croplands. RothC can be considered as a relatively simple 

model due to the reduced number of inputs and processes simulated. The processes of SOC 

accumulation can require more complex and detailed models, something that another model, like 

Century (Parton et al., 1987), could compute with higher efficiency due to the higher number of variables 

and processes that are taken into account. More studies and tests should be made in order to validate 
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the results and the approach followed. Using optimization techniques and process-based modelling it 

was demonstrated that it is possible to estimate the necessary parameters with only the SOM data 

collected in situ. 

It is, however, impossible to extrapolate and apply the same methods for different locations and years 

as previously mentioned, because the conditions can vary. Some complementary techniques, like 

remote sensing, should receive an increasing attention (Buck et al., 2015; Turner, 2014) for application 

to grasslands surveys and management, as they have been rarely studied for these LU systems when 

compared to other land covers like crops or forest (Newton et al., 2009). The downside comes from the 

typical coverage that the areas where pastures are present, at least in Portugal. They are characterized 

by Montado forests, meaning that the tree cover can difficult remote data for these ecosystem types. A 

combination of approaches is the most preferable methodology possible.  

The introduction of more production sites and years should be considered to calibrate better the model. 

It would then be possible to attain better results for both pasture-specific parameters and SOC. The 

calibration, in this case, was made using one year and 4 farms, with the objective to predict SOC for the 

same 4 farms and for the next 2 years. However, the collection of this type of data requires field work 

and the treatment of soil samples for the acquisition of SOC values. 

Another important aspect to consider is the gathering of information from the same source. For SOM 

measurements in situ were made, whilst temperature and precipitation were not measured locally but 

rather obtained from other more general data products. This constitutes a limitation because data used 

in the products could have lagged in time, as well as in spatial terms, when compared to the SOM 

measurements. 

3.2.4. Future Work 

In terms of future work, it is possible to highlight that this study enables the calculation of site-specific 

and pasture system-specific parameters, that were not collected with the SOC measurements on site. 

These parameters enable a distinction of SOC dynamics for unfertilized and fertilized pastures. This is 

a necessary first step towards the replication of the work carried out for cropland (section 3.1) but now 

for grasslands, as these specific parameters do not exist in the literature for pasture systems. The 

approach used here to use those parameters for calculating SOC stocks of a farm also showed to be 

feasible considering that it had a very small deviation from what could be possibly measured in situ. But 

there is much more to be done in what pastures are concerned. 

The calibration of the model should take into account more recent and more extensive data sets. More 

sites and longer periods should be included in order to enable the extrapolation for other study sites. 

Even though the gathering of SOC’s data sets throughout time is hard and costly, the optimal solution 

can pass from combining the approach here followed with remote sensing, such as, for example, aerial 

visible and near-infrared photographs and/or satellite data (Morais et al., 2018). 

Grasslands, as they are mainly manipulated by man, can be an important asset to consider in terms of 

sinking carbon (Post & Kwon, 2000). A similar study to what was conducted for croplands should be 
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done focusing on this type of ecosystem. With a more accurate parametrization, a global analysis could 

be done also using CC scenarios. Besides the climate data, it would be necessary to gather information 

regarding grassland management (Erb et al., 2007), as well as the data for the LtsU present (Gilbert et 

al., 2018). All of these for the present and for the future. SOC data, for the present and future, would be 

required, which, besides statistical data from FAO (2017) it still does not exist.  
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4. Concluding Remarks 

CC is bound to produce major changes in Earth’s ecological cycles and reshape ecosystems. Many of 

the effects of CC have been estimated, and important feedbacks considered such as the loss of methane 

due to permafrost melting. However, the effects of CC on SOM have so far only been coarsely estimated. 

SOM is the largest terrestrial pool of stable C and therefore even minimal quantities of SOC stock 

depletion can contribute with CO2 emissions that are likely to accelerate CC. These problems are global 

because CC does not have barriers.  

The challenge of accurately estimating these feedbacks is different for each type of land use. For 

cropland, sufficient data is available to assess the effects of CC on SOC in cases without land 

transformation. The accumulated average loss estimated situates between 18 up to 469 t C/ha under 

RCP 4.5 and 48 up to 515 t C/ha for RCP 8.5. There are, however, crop types where increasing SOC is 

possible. Under RCP 4.5 this occurs in rainfed olives, with an accumulation of 96 t C/ha. Under RCP 

8.5 rainfed cocoa and olives are responsible for an accumulation of 19 and 78 t C/ha, respectively. In 5 

up to 89% of regions with arable land (interval dependent on crop type), partial or complete closure of 

yield gaps would ensure stability of SOC stocks and reverse the loss due to CC due to increased C 

inputs into soils. Climate scenarios slightly change results but play no significant role in terms of overall 

conclusions. 

Intensification of farming for the closure of yield gaps comes with added environmental burdens. 

Assuming mineral fertilizers to be the source of N supporting the increased yields and considering the 

emissions of its production and its application, a positive feedback to CC can be found for 50 and 46 out 

of the 63 crop types. The emissions from using fertilizers are larger than the emissions of CO2 from SOC 

depletion in the same regions in case no intensification takes place. 

Grasslands have new sets of challenges to overcome. Grassland systems are extremely variable as the 

environmental pressures they are exposed to depend on the region, and their performance depends on 

multiple other factors – such as plant composition, grazing/harvesting intensity, etc. There is a general 

lack of data available to perform, for this type of ecosystems, the same analysis performed for cropland. 

This means that new approaches and methods are required before considering a study on the effects 

of CC for each type of grassland system. As illustrated here, approaches from machine learning can be 

combined with process-based modelling to overcome data limitations. This thesis showed that applying 

this method for Portuguese unfertilized pastures results in a deviation around of 1 t C/ha from in situ 

measurements, ranging from an underestimation of around -6.5 t C/ha to an overestimation of 4.6 t C/ha 

for individual farms. These discrepancies probably arise from lack of data points for statistical 

representability of the model, but local heterogeneity of pastures, even at regional scale, cannot be 

discarded. The extrapolation for other pasture systems, farms and even years is dependent of the 

gathering of more data and the introduction of more management parameters into the simulation.  

All in all, whether the systems studied here are C sinks or sources is highly dependent on land 

occupation and how that land is managed, but the contribution of each factor is certain to change with 

CC. The complex two-way effects between CC and land management choices must be more thoroughly 
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considered in a rapidly changing world. These management choices from tillage to fertilization, from 

LUC to crop choice, should have in mind the environmental factors that will be affected because the 

global food security is at stake. For cropland, it is no longer acceptable to consider all agricultural use 

types as the same, as different crops will behave differently (and SOC will respond differently) to CC, 

and for some it may be impossible to prevent any climate feedback even with increased C inputs to soil 

due to the blowback effect from fertilizer use. For grassland, there are too many unknowns as the 

systems vary with location and management. However, as demonstrated in this thesis, the tools for 

depicting the effects of CC in farmland and vice-versa are available and should be increasingly 

deployed. 

 



69 
  

References 

Alexandratos, N., & Bruinsma, J. (2012). World Agriculture Towards 2030/2050: The 2012 Revision. 

Allen, D. E., Pringle, M. J., Bray, S., Hall, T. J., O’Reagain, P. O., Phelps, D., Cobon, D. H., Bloesch, P. 

M., & Dalal, R. C. (2013). What determines soil organic carbon stocks in the grazing lands of north-

eastern Australia? Soil Research, 51(8), 695–706. https://doi.org/10.1071/SR13041 

Angers, D., & Eriksen-Hamel, N. (2008). Full-Inversion Tillage and Organic Carbon Distribution in Soil 

Profiles: A Meta-Analysis. Soil Science Society of America Journal - SSSAJ, 72. 

https://doi.org/10.2136/sssaj2007.0342 

Balázs, D., Valkó, O., Tóthmérész, B., & Török, P. (2014). Alkali marshes of Central Europe-Ecology, 

management and nature conservation. In Salt Marshes-Ecosystem, Vegetation and Restoration 

Strategies (pp. 1–11). 

Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., & White, J. W. C. (2012). Increase in observed 

net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488(7409), 70–

72. https://doi.org/10.1038/nature11299 

Beltrán-Tolosa, L. M., Navarro-Racines, C., Pradhan, P., Cruz-Garcia, G. S., Solis, R., & Quintero, M. 

(2020). Action needed for staple crops in the Andean-Amazon foothills because of climate change. 

Mitigation and Adaptation Strategies for Global Change, 25(6), 1103–1127. 

https://doi.org/10.1007/s11027-020-09923-4 

Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O’Connor, T., O’Farrell, P. J., Smith, 

H. G., & Lindborg, R. (2019). Grasslands—more important for ecosystem services than you might 

think. Ecosphere, 10(2), e02582. https://doi.org/doi:10.1002/ecs2.2582 

Bhandari, K. B., West, C. P., Acosta-Martinez, V., Cotton, J., & Cano, A. (2018). Soil health indicators 

as affected by diverse forage species and mixtures in semi-arid pastures. Applied Soil Ecology, 

132, 179–186. https://doi.org/https://doi.org/10.1016/j.apsoil.2018.09.002 

Bond-Lamberty, B., & Thomson, A. (2010). Temperature-associated increases in the global soil 

respiration record. Nature, 464(7288), 579–582. https://doi.org/10.1038/nature08930 

Börjesson, G., Bolinder, M. A., Kirchmann, H., & Kätterer, T. (2018). Organic carbon stocks in topsoil 

and subsoil in long-term ley and cereal monoculture rotations. Biology and Fertility of Soils, 54(4), 

549–558. https://doi.org/10.1007/s00374-018-1281-x 

Bruun, T. B., Elberling, B., de Neergaard, A., & Magid, J. (2015). Organic Carbon Dynamics in Different 

Soil Types After Conversion of Forest to Agriculture. Land Degradation & Development, 26(3), 

272–283. https://doi.org/doi:10.1002/ldr.2205 

Buck, O., Millán, V. E. G., Klink, A., & Pakzad, K. (2015). Using information layers for mapping grassland 

habitat distribution at local to regional scales. International Journal of Applied Earth Observation 



70 
  

and Geoinformation, 37, 83–89. https://doi.org/https://doi.org/10.1016/j.jag.2014.10.012 

Building, C., & Pasteur, P. (2005). J.1365-2486.2005.001075.Pdf. 44(January), 2141–2152. 

https://doi.org/10.1111/j.1365-2486.2005.01075.x 

Caddeo, A., Marras, S., Sallustio, L., Spano, D., & Sirca, C. (2019). Soil organic carbon in Italian forests 

and agroecosystems: Estimating current stock and future changes with a spatial modelling 

approach. Agricultural and Forest Meteorology, 278(August 2018), 107654. 

https://doi.org/10.1016/j.agrformet.2019.107654 

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., 

Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., & 

Reichstein, M. (2014). Global covariation of carbon turnover times with climate in terrestrial 

ecosystems. Nature, 514(7521), 213–217. https://doi.org/10.1038/nature13731 

Chapagain,  a K., & Hoekstra,  a Y. (2004). Water footprint of nations. Volume 1 : Main report. Value of 

Water Research Report Series, 1(16), 1–80. 

http://waterfootprint.org/media/downloads/Report16Vol1.pdf 

Coleman, K. and D. . J. (2014). RothC - A model for the turnover of carbon in soil. June, 1–44. 

papers3://publication/uuid/29E0B023-7CFB-4782-8C2C-71191AA24E43 

Coleman, K., & Jenkinson, D. S. (1996). RothC-26.3 - A Model for the turnover of carbon in soil BT  - 

Evaluation of Soil Organic Matter Models (D. S. Powlson, P. Smith, & J. U. Smith (eds.); pp. 237–

246). Springer Berlin Heidelberg. 

Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klír, J., Körschens, M., Poulton, P. R., & 

Richter, D. D. (1997). Simulating trends in soil organic carbon in long-term experiments using 

RothC-26.3. Geoderma, 81(1), 29–44. https://doi.org/https://doi.org/10.1016/S0016-

7061(97)00079-7 

Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., 

Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., 

Leifeld, J., Parton, W. J., Megan Steinweg, J., Wallenstein, M. D., Martin Wetterstedt, J. Å., & 

Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates – synthesis of 

current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404. 

https://doi.org/doi:10.1111/j.1365-2486.2011.02496.x 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., 

& Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental 

Change, 26, 152–158. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2014.04.002 

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., MacHmuller, M. B., 

Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, 

Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., … Bradford, M. A. (2016). 



71 
  

Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108. 

https://doi.org/10.1038/nature20150 

Cui, Z., Liu, Y., Huang, Z., He, H., & Wu, G. L. (2019). Potential of artificial grasslands in crop rotation 

for improving farmland soil quality. Land Degradation and Development, 30(18), 2187–2196. 

https://doi.org/10.1002/ldr.3415 

Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and 

feedbacks to climate change. Nature, 440(7081), 165–173. https://doi.org/10.1038/nature04514 

Dechow, R., Franko, U., Kätterer, T., & Kolbe, H. (2019). Evaluation of the RothC model as a prognostic 

tool for the prediction of SOC trends in response to management practices on arable land. 

Geoderma, 337(March 2018), 463–478. https://doi.org/10.1016/j.geoderma.2018.10.001 

Deng, A., Chen, C., Feng, J., Chen, J., & Zhang, W. (2017). Cropping system innovation for coping with 

climatic warming in China. Crop Journal, 5(2), 136–150. https://doi.org/10.1016/j.cj.2016.06.015 

Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., Casanova-Katny, A., 

Muñoz, C., Boudin, M., Zagal Venegas, E., & Boeckx, P. (2015). Soil carbon storage controlled by 

interactions between geochemistry and climate. Nature Geoscience, 8(10), 780–783. 

https://doi.org/10.1038/ngeo2516 

du Plessis, J. (2008). Sorghum production. In Department of Agriculture Republic of South Africa. 

https://www.nda.agric.za/docs/Infopaks/FieldCrops_Sorghum.pdf 

Du, Y., Cui, B., zhang, Q., Wang, Z., Sun, J., & Niu, W. (2020). Effects of manure fertilizer on crop yield 

and soil properties in China: A meta-analysis. CATENA, 193, 104617. 

https://doi.org/https://doi.org/10.1016/j.catena.2020.104617 

Eichberg, C., & Donath, T. W. (2018). Sheep trampling on surface-lying seeds improves seedling 

recruitment in open sand ecosystems. Restoration Ecology, 26(S2), S211–S219. 

https://doi.org/doi:10.1111/rec.12650 

Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: Anthropogenic biomes of the world. 

Frontiers in Ecology and the Environment, 6(8), 439–447. https://doi.org/10.1890/070062 

Erb, K.-H., Gaube, V., Krausmann, F., Plutzar, C., Bondeau, A., & Haberl, H. (2007). A comprehensive 

global 5 min resolution land-use data set for the year 2000 consistent with national census data. 

Journal of Land Use Science, 2(3), 191–224. https://doi.org/10.1080/17474230701622981 

Erb, K.-H., Lauk, C., Kastner, T., Mayer, A., Theurl, M. C., & Haberl, H. (2016). Exploring the biophysical 

option space for feeding the world without deforestation. Nature Communications, 7(1), 11382. 

https://doi.org/10.1038/ncomms11382 

Ernst Detlef, S., Wirth, C., & Heimann, M. (2000). Managing Forests After Kyoto. Science (New York, 



72 
  

N.Y.), 289, 2058–2059. https://doi.org/10.1126/science.289.5487.2058 

Falloon, P., & Smith, P. (2006). Simulating SOC changes in long-term experiments with RothC and 

CENTURY: model evaluation for a regional scale application. Soil Use and Management, 18(2), 

101–111. https://doi.org/10.1111/j.1475-2743.2002.tb00227.x 

FAO. (2017a). Global database of GHG emissions related to feed crops: A life cycle inventory. Version 

1. Livestock Environmental Assessment and Performance Partnership. 

FAO. (2017b). Global Soil Organic Carbon Map. http://www.fao.org/global-soil-partnership/pillars-

action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map/en/ 

Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross, N., & Ouin, A. (2020). Prediction 

of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series. Remote Sensing 

of Environment, 237(July 2019). https://doi.org/10.1016/j.rse.2019.111536 

Field, C., Barros, V., Stocker, T., & Dahe, Q. (Eds. ). (2012). Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press. https://doi.org/DOI: 

10.1017/CBO9781139177245 

Fischer, C., Roscher, C., Jensen, B., Eisenhauer, N., Baade, J., Attinger, S., Scheu, S., Weisser, W. 

W., Schumacher, J., & Hildebrandt, A. (2014). How Do Earthworms, Soil Texture and Plant 

Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland? PLOS 

ONE, 9(6), e98987. https://doi.org/10.1371/journal.pone.0098987 

Fischer, E. M., & Knutti, R. (2014). Detection of spatially aggregated changes in temperature and 

precipitation extremes. Geophysical Research Letters, 41(2), 547–554. 

https://doi.org/doi:10.1002/2013GL058499 

Fischer, E. M., Seneviratne, S. I., Lüthi, D., & Schär, C. (2007). Contribution of land-atmosphere coupling 

to recent European summer heat waves. Geophysical Research Letters, 34(6). 

https://doi.org/doi:10.1029/2006GL029068 

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. 

T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., 

Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global 

consequences of land use. Science, 309(5734), 570–574. 

https://doi.org/10.1126/science.1111772 

Food and Agriculture Organization of the United Nations - Statistics Division. (n.d.). FAO. 

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., van der Velde, 

M., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J. G., Ciais, P., Cramer, W., Ibrom, A., 

Miglietta, F., Poulter, B., Rammig, A., … Zscheischler, J. (2015). Effects of climate extremes on 



73 
  

the terrestrial carbon cycle: Concepts, processes and potential future impacts. Global Change 

Biology, 21(8), 2861–2880. https://doi.org/10.1111/gcb.12916 

Freibauer, A., Rounsevell, M. D. A., Smith, P., & Verhagen, J. (2004). Carbon sequestration in the 

agricultural soils of Europe. Geoderma, 122(1), 1–23. 

https://doi.org/https://doi.org/10.1016/j.geoderma.2004.01.021 

Freund, L., Carrillo, J., Storm, C., & Schwabe, A. (2015). Restoration of a newly created inland-dune 

complex as a model in practice: Impact of substrate, minimized inoculation and grazing. Tuexenia, 

35(1), 221–248. https://doi.org/10.14471/2014.35.022 

Gaitán, J. J., Bran, D. E., Oliva, G. E., Aguiar, M. R., Buono, G. G., Ferrante, D., Nakamatsu, V., Ciari, 

G., Salomone, J. M., Massara, V., Martínez, G. G., & Maestre, F. T. (2018). Aridity and Overgrazing 

Have Convergent Effects on Ecosystem Structure and Functioning in Patagonian Rangelands. 

Land Degradation & Development, 29(2), 210–218. https://doi.org/doi:10.1002/ldr.2694 

Gan, Y., Siddique, K. H. M., Turner, N. C., Li, X.-G., Niu, J.-Y., Yang, C., Liu, L., & Chai, Q. (2013). 

Chapter Seven - Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop 

Productivity in Semiarid Rain-Fed Environments. In D. L. B. T.-A. in A. Sparks (Ed.), Advances in 

Agronomy (Vol. 118, pp. 429–476). Academic Press. https://doi.org/https://doi.org/10.1016/B978-

0-12-405942-9.00007-4 

Ghimire, R., Thapa, V. R., Cano, A., & Acosta-Martinez, V. (2019). Soil organic matter and microbial 

community responses to semiarid croplands and grasslands management. Applied Soil Ecology, 

141(April), 30–37. https://doi.org/10.1016/j.apsoil.2019.05.002 

Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., & 

Robinson, T. P. (2018). Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, 

chickens and ducks in 2010. Scientific Data, 5(1), 180227. https://doi.org/10.1038/sdata.2018.227 

Gottschalk, P., Smith, J. U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., Osborn, T. J., Jones, 

C., & Smith, P. (2012). How will organic carbon stocks in mineral soils evolve under future climate? 

Global projections using RothC for a range of climate change scenarios. Biogeosciences, 9(8), 

3151–3171. https://doi.org/10.5194/bg-9-3151-2012 

Gouttevin, I., Menegoz, M., Dominé, F., Krinner, G., Koven, C., Ciais, P., Tarnocai, C., & Boike, J. 

(2012). How the insulating properties of snow affect soil carbon distribution in the continental pan-

Arctic area. Journal of Geophysical Research: Biogeosciences, 117(2), 1–11. 

https://doi.org/10.1029/2011JG001916 

Guo, S., Han, X., Li, H., Wang, T., Tong, X., Ren, G., Feng, Y., & Yang, G. (2018). Evaluation of soil 

quality along two revegetation chronosequences on the Loess Hilly Region of China. Science of 

The Total Environment, 633, 808–815. 

https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.210 



74 
  

Hanson, C. E., Palutikof, J. P., & Dlugolecki, A. (2006). Bridging the gap between science and the 

stakeholder: the case of climate change research . Climate Research, 31(1), 121–133. 

http://www.int-res.com/abstracts/cr/v31/n1/p121-133/ 

Hao, R., & Yu, D. (2018). Optimization schemes for grassland ecosystem services under climate 

change. Ecological Indicators, 85, 1158–1169. 

https://doi.org/https://doi.org/10.1016/j.ecolind.2017.12.012 

Havilah, E., Warren, H., Lawrie, R., Senn, A., & Milham, P. (2005). Fertilisers for Pastures. 

Heikkinen, J., Keskinen, R., Regina, K., Honkanen, H., & Nuutinen, V. (2020). Estimation of carbon 

stocks in boreal cropland soils - methodological considerations. European Journal of Soil Science, 

July, 1–12. https://doi.org/10.1111/ejss.13033 

Heinsoo, K., Sammul, M., Kukk, T., Kull, T., & Melts, I. (2020). The long-term recovery of a moderately 

fertilised semi-natural grassland. Agriculture, Ecosystems and Environment, 289(November 

2019). https://doi.org/10.1016/j.agee.2019.106744 

Herrero-Jáuregui, C., & Oesterheld, M. (2017). Effects of grazing intensity on plant richness and 

diversity: A meta-analysis. Oikos. https://doi.org/10.1111/oik.04893 

Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O. B., Formayer, 

H., Orlowsky, B., & Stepanek, P. (2011). Observational evidence for soil-moisture impact on hot 

extremes in southeastern Europe. Nature Geoscience, 4(1), 17–21. 

https://doi.org/10.1038/ngeo1032 

Hobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. (2015). Drivers of soil organic carbon storage and 

vertical distribution in Eastern Australia. Plant and Soil, 390(1), 111–127. 

https://doi.org/10.1007/s11104-015-2380-1 

Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., & Woodwell, G. 

M. (1983). Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: 

A Net Release of CO’2 to the Atmosphere. Ecological Monographs, 53(3), 235–262. 

https://doi.org/10.2307/1942531 

Houghton, R. A., & Nassikas, A. A. (2017). Global and regional fluxes of carbon from land use and land 

cover change 1850–2015. Global Biogeochemical Cycles, 31(3), 456–472. 

https://doi.org/10.1002/2016GB005546 

Hu, X., Li, Z.-C., Li, X.-Y., & Liu, L. (2016). Quantification of soil macropores under alpine vegetation 

using computed tomography in the Qinghai Lake Watershed, NE Qinghai–Tibet Plateau. 

Geoderma, 264, 244–251. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.11.001 

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., 

Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., 



75 
  

Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., … Wang, Y. P. (2011). 

Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual 

land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1), 117–

161. https://doi.org/10.1007/s10584-011-0153-2 

IEA. (2019). The Future of Hydrogen. June. 

IISA/FAO. (2012). Global Agro-ecological Zones. 

https://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/ 

Intermag. (n.d.). Intermag. https://intermag.eu/crop-farming/crop-guides/crop-recommendations-sugar-

beet 

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Inventories – A primer, Prepared by the 

National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and 

Tanabe K. Iges, 20. 

Jarecki, M. K., & Lal, R. (2003). Crop Management for Soil Carbon Sequestration. Critical Reviews in 

Plant Sciences, 22(6), 471–502. https://doi.org/10.1080/713608318 

Jebari, A., del Prado, A., Pardo, G., Rodríguez Martín, J. A., & Álvaro-Fuentes, J. (2018). Modeling 

Regional Effects of Climate Change on Soil Organic Carbon in Spain. Journal of Environmental 

Quality, 47(4), 644–653. https://doi.org/doi:10.2134/jeq2017.07.0294 

Jiang, Z., Zhong, Y., Yang, J., Wu, Y., Li, H., & Zheng, L. (2019). Effect of nitrogen fertilizer rates on 

carbon footprint and ecosystem service of carbon sequestration in rice production. Science of the 

Total Environment, 670, 210–217. https://doi.org/10.1016/j.scitotenv.2019.03.188 

Jobbágy, E., & Jackson, R. (2000). The Vertical Distribution of Soil Organic Carbon and Its Relation to 

Climate and Vegetation. Ecological Applications, 10, 423–436. https://doi.org/10.1890/1051-

0761(2000)010[0423:TVDOSO]2.0.CO;2 

Jones, M. B., & Donnelly, A. (2004). Carbon sequestration in temperate grassland ecosystems and the 

influence of management, climate and elevated CO2. New Phytologist, 164(3), 423–439. 

https://doi.org/doi:10.1111/j.1469-8137.2004.01201.x 

Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic 

matter formation and its ecophysiological controls. Nature Communications, 7(1), 13630. 

https://doi.org/10.1038/ncomms13630 

Koven, C., Hugelius, G., Lawrence, D., & Wieder, W. (2017). Higher climatological temperature 

sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7. 

https://doi.org/10.1038/nclimate3421 

Kragt, M., Pannell, D., Robertson, M., & Thamo, T. (2012). Assessing costs of soil carbon sequestration 



76 
  

by crop-livestock farmers in Western Australia. Agricultural Systems, 112, 27–37. 

https://doi.org/10.1016/j.agsy.2012.06.005 

Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. 

Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396 

Lal, Rattan, Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in 

Environmental Sustainability, 15, 79–86. 

https://doi.org/https://doi.org/10.1016/j.cosust.2015.09.002 

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., 

Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., 

Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., … Xu, J. (2001). The causes 

of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 

11(4), 261–269. https://doi.org/https://doi.org/10.1016/S0959-3780(01)00007-3 

Lark, R. M., Ander, E. L., & Broadley, M. R. (2019). Combining two national-scale datasets to map soil 

properties, the case of available magnesium in England and Wales. European Journal of Soil 

Science, 70(2), 361–377. https://doi.org/doi:10.1111/ejss.12743 

Lassaletta, L., Billen, G., Grizzetti, B., Juliette, A., & Garnier, J. (2014). 50 year trends in nitrogen use 

efficiency of world cropping systems: The relationship between yield and nitrogen input to 

cropland. Environmental Research Letters, 105011, 105011. https://doi.org/10.1088/1748-

9326/9/10/105011 

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Ivar Korsbakken, 

J., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, 

V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., … Zhu, D. (2018). Global 

Carbon Budget 2017. Earth System Science Data, 10(1), 405–448. https://doi.org/10.5194/essd-

10-405-2018 

Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, 

S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., 

Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., … Woodward, F. I. (2009). Trends 

in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831–836. 

https://doi.org/10.1038/ngeo689 

Li, C., Li, C., Han, J., Zhang, J., Wang, Y., Yang, F., Wen, X., & Liao, Y. (2019). Greenhouse gas 

mitigation potential of balanced fertilization cropland under double-cropping systems: a case study 

in Shaanxi province, China. Environmental Monitoring and Assessment, 191(2), 55–60. 

https://doi.org/10.1007/s10661-019-7203-z 

Li, X., Su, D., & Yuan, Q. (2007). Ridge-furrow planting of alfalfa (Medicago sativa L.) for improved 

rainwater harvest in rainfed semiarid areas in Northwest China. Soil and Tillage Research, 93(1), 



77 
  

117–125. https://doi.org/https://doi.org/10.1016/j.still.2006.03.022 

Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. 

(2010). Mind the gap: How do climate and agricultural management explain the “yield gap” of 

croplands around the world? Global Ecology and Biogeography, 19(6), 769–782. 

https://doi.org/10.1111/j.1466-8238.2010.00563.x 

Liu, D. L., Chan, K. Y., Conyers, M. K., Li, G., & Poile, G. J. (2011). Simulation of soil organic carbon 

dynamics under different pasture managements using the RothC carbon model. Geoderma, 

165(1), 69–77. https://doi.org/https://doi.org/10.1016/j.geoderma.2011.07.005 

Lu, X. (2020). Fertilizer Types Affect Soil Organic Carbon Content and Crop Production: A Meta-

analysis. Agricultural Research, 9(1), 94–101. https://doi.org/10.1007/s40003-019-00410-0 

Lüscher, A., Mueller-Harvey, I., Soussana, J. F., Rees, R. M., & Peyraud, J. L. (2014). Potential of 

legume-based grassland–livestock systems in Europe: a review. Grass and Forage Science, 

69(2), 206–228. https://doi.org/doi:10.1111/gfs.12124 

Ma, K., Liu, J., Balkovič, J., Skalský, R., Azevedo, L. B., & Kraxner, F. (2016). Changes in soil organic 

carbon stocks of wetlands on China’s Zoige plateau from 1980 to 2010. Ecological Modelling, 327, 

18–28. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2016.01.009 

Marras, S., Masia, S., Duce, P., Spano, D., & Sirca, C. (2015). Carbon footprint assessment on a mature 

vineyard. Agricultural and Forest Meteorology, 214–215, 350–356. 

https://doi.org/https://doi.org/10.1016/j.agrformet.2015.08.270 

Mauser, W., Klepper, G., Zabel, F., Delzeit, R., Hank, T., Putzenlechner, B., & Calzadilla, A. (2015). 

Global biomass production potentials exceed expected future demand without the need for 

cropland expansion. Nature Communications, 6(1), 8946. https://doi.org/10.1038/ncomms9946 

Meier, I., & Leuschner, C. (2010). Variation of soil and biomass carbon pools in beech forests across a 

precipitation gradient. Global Change Biology, 16. https://doi.org/10.1111/j.1365-

2486.2009.02074.x 

Mejía, D. (2003). Post-harvest Operations. 

Menichetti, L., Ekblad, A., & Kätterer, T. (2015). Contribution of roots and amendments to soil carbon 

accumulation within the soil profile in a long-term field experiment in Sweden. Agriculture, 

Ecosystems & Environment, 200, 79–87. https://doi.org/10.1016/j.agee.2014.11.003 

Merunková, K., & Chytrý, M. (2012). Environmental control of species richness and composition in 

upland grasslands of the southern Czech Republic. Plant Ecology, 213(4), 591–602. 

https://doi.org/10.1007/s11258-012-0024-6 

Meurer, K. H. E., Bolinder, M. A., Andrén, O., Hansson, A.-C., Pettersson, R., & Kätterer, T. (2019). 



78 
  

Shoot and root production in mixed grass ley under daily fertilization and irrigation: validating the 

N productivity concept under field conditions. Nutrient Cycling in Agroecosystems, 115(1), 85–99. 

https://doi.org/10.1007/s10705-019-10006-3 

Milberg, P., Bergman, K. O., Glimskär, A., Nilsson, S., & Tälle, M. (2020). Site factors are more important 

than management for indicator species in semi-natural grasslands in southern Sweden. Plant 

Ecology, 221(7), 577–594. https://doi.org/10.1007/s11258-020-01035-y 

Millennium Ecosystem Assessment. (2013). Summary for decision makers. In Millennium Ecosystem 

Assessment. https://doi.org/10.5822/978-1-61091-484-0_1 

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., 

Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, 

B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil 

carbon 4 per mille. Geoderma, 292, 59–86. 

https://doi.org/https://doi.org/10.1016/j.geoderma.2017.01.002 

MOKANY, K., RAISON, R. J., & PROKUSHKIN, A. S. (2006). Critical analysis of root : shoot ratios 

in terrestrial biomes. Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-

2486.2005.001043.x 

Monson, R. K., Lipson, D. L., Burns, S. P., Turnipseed, A. A., Delany, A. C., Williams, M. W., & Schmidt, 

S. K. (2006). Winter forest soil respiration controlled by climate and microbial community 

composition. Nature, 439(7077), 711–714. https://doi.org/10.1038/nature04555 

Morais, T. G., Silva, C., Jebari, A., Álvaro-Fuentes, J., Domingos, T., & Teixeira, R. F. M. (2018). A 

proposal for using process-based soil models for land use Life cycle impact assessment: 

Application to Alentejo, Portugal. Journal of Cleaner Production, 192, 864–876. 

https://doi.org/10.1016/j.jclepro.2018.05.061 

Morais, T. G., Teixeira, R. F. M., & Domingos, T. (2019). Detailed global modelling of soil organic carbon 

in cropland, grassland and forest soils. PLoS ONE, 14(9), 1–27. 

https://doi.org/10.1371/journal.pone.0222604 

Morais, T. G., Teixeira, R. F. M., Rodrigues, N. R., & Domingos, T. (2018). Characterizing livestock 

production in Portuguese sown rainfed grasslands: Applying the inverse approach to a process-

based model. Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124437 

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. 

R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., 

Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next 

generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–

756. https://doi.org/10.1038/nature08823 

Mueller, B., & Seneviratne, S. I. (2012). Hot days induced by precipitation deficits at the global scale. 



79 
  

Proceedings of the National Academy of Sciences, 109(31), 12398 LP – 12403. 

https://doi.org/10.1073/pnas.1204330109 

Müller, C., & Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. 

Agricultural Economics (United Kingdom), 45(1), 37–50. https://doi.org/10.1111/agec.12088 

Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., Hill, S. L. L., Hoskins, A. 

J., Lysenko, I., Phillips, H. R. P., Burton, V. J., Chng, C. W. T., Emerson, S., Gao, D., Pask-Hale, 

G., Hutton, J., Jung, M., Sanchez-Ortiz, K., Simmons, B. I., … Purvis, A. (2016). Has land use 

pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 

353(6296), 288 LP – 291. https://doi.org/10.1126/science.aaf2201 

Newton, A. C., Hill, R. A., Echeverría, C., Golicher, D., Rey Benayas, J. M., Cayuela, L., & Hinsley, S. 

A. (2009). Remote sensing and the future of landscape ecology. Progress in Physical Geography: 

Earth and Environment, 33(4), 528–546. https://doi.org/10.1177/0309133309346882 

O’Mara, F. P. (2012). The role of grasslands in food security and climate change. Annals of Botany, 

110(6), 1263–1270. https://doi.org/10.1093/aob/mcs209 

Palpurina, S., Chytrý, M., Hölzel, N., Tichý, L., Wagner, V., Horsák, M., Axmanová, I., Hájek, M., 

Hájková, P., Freitag, M., Lososová, Z., Mathar, W., Tzonev, R., Danihelka, J., & Dřevojan, P. 

(2019). The type of nutrient limitation affects the plant species richness–productivity relationship: 

Evidence from dry grasslands across Eurasia. Journal of Ecology, 107(3), 1038–1050. 

https://doi.org/doi:10.1111/1365-2745.13084 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, 

A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., 

Rautiainen, A., Sitch, S., & Hayes, D. (2011). A Large and Persistent Carbon Sink in the 

World{\textquoteright}s Forests. Science, 333(6045), 988–993. 

https://doi.org/10.1126/science.1201609 

Panakoulia, S. K., Nikolaidis, N. P., Paranychianakis, N. V, Menon, M., Schiefer, J., Lair, G. J., Krám, 

P., & Banwart, S. A. (2017). Chapter Nine - Factors Controlling Soil Structure Dynamics and 

Carbon Sequestration Across Different Climatic and Lithological Conditions. In S. A. Banwart & D. 

L. B. T.-A. in A. Sparks (Eds.), Quantifying and Managing Soil Functions in Earth’s Critical Zone 

(Vol. 142, pp. 241–276). Academic Press. 

https://doi.org/https://doi.org/10.1016/bs.agron.2016.10.008 

Pärtel, M., Bruun, H., & Sammul, M. (2015). Biodiversity in temperate European grasslands: origin and 

conservation. 

Parton, W. J., Schimel, D. S., Cole, C. V, & Ojima, D. S. (1987). Analysis of Factors Controlling Soil 

Organic Matter Levels in Great Plains Grasslands. Soil Science Society of America Journal, 51(5), 

1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x 



80 
  

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. 

Nature, 532(7597), 49–57. https://doi.org/10.1038/nature17174 

Pendergrass, A., Wang, J.-J., & National Center for Atmospheric Research Staff (Eds). (2020). The 

Climate Data Guide: GPCP (Monthly): Global Precipitation Climatology Project. 

https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-

project 

Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y., & Zeng, H. (2014). 

Afforestation in China cools local land surface temperature. Proceedings of the National Academy 

of Sciences, 111(8), 2915 LP – 2919. https://doi.org/10.1073/pnas.1315126111 

Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P. W., Fernandez-

Manjarrés, J. F., Araújo, M. B., Balvanera, P., Biggs, R., Cheung, W. W. L., Chini, L., Cooper, H. 

D., Gilman, E. L., Guénette, S., Hurtt, G. C., Huntington, H. P., Mace, G. M., Oberdorff, T., 

Revenga, C., … Walpole, M. (2010). Scenarios for Global Biodiversity in the 21st Century. Science, 

330(6010), 1496–1501. https://doi.org/10.1126/science.1196624 

Poirier, V., Angers, D., Rochette, P., Chantigny, M., Ziadi, N., Tremblay, G., & Fortin, J. (2009). 

Interactive Effects of Tillage and Mineral Fertilization on Soil Carbon Profiles. Soil Science Society 

of America Journal, 73, 255–261. https://doi.org/10.2136/sssaj2008.0006 

Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions 

of the Royal Society of London. Series B, Biological Sciences, 360(1463), 2021–2035. 

https://doi.org/10.1098/rstb.2005.1752 

Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and 

potential. Global Change Biology, 6(3), 317–327. https://doi.org/doi:10.1046/j.1365-

2486.2000.00308.x 

Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 

156(3), 75–83. https://doi.org/https://doi.org/10.1016/j.geoderma.2010.02.003 

Prietzel, J., Zimmermann, L., Schubert, A., & Christophel, D. (2016). Organic matter losses in German 

Alps forest soils since the 1970s most likely caused by warming. Nature Geoscience, 9(7), 543–

548. https://doi.org/10.1038/ngeo2732 

Pugh, T. A. M., Müller, C., Elliott, J., Deryng, D., Folberth, C., Olin, S., Schmid, E., & Arneth, A. (2016). 

Climate analogues suggest limited potential for intensification of production on current croplands 

under climate change. Nature Communications, 7, 1–8. https://doi.org/10.1038/ncomms12608 

Raiesi, F., & Kabiri, V. (2016). Identification of soil quality indicators for assessing the effect of different 

tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators, 71, 

198–207. https://doi.org/https://doi.org/10.1016/j.ecolind.2016.06.061 



81 
  

Ramankutty, N., Foley, J. A., Norman, J., & McSweeney, K. (2002). The global distribution of cultivable 

lands: current patterns and sensitivity to possible climate change. Global Ecology and 

Biogeography, 11(5), 377–392. https://doi.org/doi:10.1046/j.1466-822x.2002.00294.x 

RAMANKUTTY, N., GIBBS, H. K., ACHARD, F., DEFRIES, R., FOLEY, J. A., & HOUGHTON, R. A. 

(2007). Challenges to estimating carbon emissions from tropical deforestation. Global Change 

Biology, 13(1), 51–66. https://doi.org/10.1111/j.1365-2486.2006.01272.x 

Ramirez-Cabral, N. Y. Z., Kumar, L., & Shabani, F. (2017). Global alterations in areas of suitability for 

maize production from climate change and using a mechanistic species distribution model 

(CLIMEX). Scientific Reports, 7(1), 5910. https://doi.org/10.1038/s41598-017-05804-0 

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, 

C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., Van Der Velde, 

M., Vicca, S., Walz, A., & Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 

500(7462), 287–295. https://doi.org/10.1038/nature12350 

Riesbaum, K., Bern, A., BIEDENKAPP, D., VOGES, H.-W., GARBE, D., PAETZ, C., COLLIN, G., 

MAYER, D., & HOKE, H. (2012). Hydrocarbons. https://doi.org/10.1002/14356007.a13 

Roeling, I. S., Ozinga, W. A., van Dijk, J., Eppinga, M. B., & Wassen, M. J. (2018). Plant species 

occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios. Oecologia, 186(4), 

1055–1067. https://doi.org/10.1007/s00442-018-4086-6 

Sala, O. E., Chapin, F. S. 3rd, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., 

Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, 

M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global biodiversity 

scenarios for the year 2100. Science (New York, N.Y.), 287(5459), 1770–1774. 

https://doi.org/10.1126/science.287.5459.1770 

Salvati, L., & Carlucci, M. (2015). Towards sustainability in agro-forest systems? Grazing intensity, soil 

degradation and the socioeconomic profile of rural communities in Italy. Ecological Economics, 

112, 1–13. https://doi.org/https://doi.org/10.1016/j.ecolecon.2015.02.001 

Schaub, S., Buchmann, N., Lüscher, A., & Finger, R. (2020). Economic benefits from plant species 

diversity in intensively managed grasslands. Ecological Economics, 168(July 2018). 

https://doi.org/10.1016/j.ecolecon.2019.106488 

Schwalm, C., Williams, C., Schaefer, K., Baldocchi, D., Black, A., Goldstein, A., Law, B., Oechel, W., U, 

K. T., & Scott, R. (2012). Reduction in carbon uptake during turn of the century drought in Western 

North America. Nature Geoscience, 5, 551–556. https://doi.org/10.1038/NGEO1529 

Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: a grassland perspective. Global Change 

Biology, 4(2), 229–233. https://doi.org/10.1046/j.1365-2486.1998.00151.x 



82 
  

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., 

Mcinnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., & Zhang, X. (2012). Changes in 

climate extremes and their impacts on the natural physical environment. 

Serrano, J. M., Peça, J. O., Marques da Silva, J. R., Shahidian, S., & Carvalho, M. (2011). Phosphorus 

dynamics in permanent pastures: differential fertilizing and the animal effect. Nutrient Cycling in 

Agroecosystems, 90(1), 63–74. https://doi.org/10.1007/s10705-010-9412-2 

Serrano, J. M., Shahidian, S., & Marques da Silva, J. R. (2013). Small scale soil variation and its effect 

on pasture yield in southern Portugal. Geoderma, 195–196, 173–183. 

https://doi.org/10.1016/j.geoderma.2012.12.001 

Silva, W. K. de M., Medeiros, S. E. L., da Silva, L. P., Coelho Junior, L. M., & Abrahão, R. (2020). 

Sugarcane production and climate trends in Paraíba state (Brazil). Environmental Monitoring and 

Assessment, 192(6), 392. https://doi.org/10.1007/s10661-020-08358-3 

Smit, C., & Putman, R. J. (2011). Large herbivores as Environmental Engineers. Ungulate Management 

in Europe; Problems and Practices. 

Smit, H. J., Metzger, M. J., & Ewert, F. (2008). Spatial distribution of grassland productivity and land use 

in Europe. Agricultural Systems, 98(3), 208–219. 

https://doi.org/https://doi.org/10.1016/j.agsy.2008.07.004 

Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., 

Rounsevell, M. D. A., Reginster, I., & Ewert, F. (2005). Projected changes in mineral soil carbon 

of European croplands and grasslands, 1990-2080. Global Change Biology, 11(12), 2141–2152. 

https://doi.org/10.1111/j.1365-2486.2005.001075.x 

Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in 

Agroecosystems, 81(2), 169–178. https://doi.org/10.1007/s10705-007-9138-y 

Smith, P., Haberl, H., Popp, A., Erb, K., Lauk, C., Harper, R., Tubiello, F. N., de Siqueira Pinto, A., Jafari, 

M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., 

Dong, H., Elsiddig, E. A., Mbow, C., … Rose, S. (2013). How much land-based greenhouse gas 

mitigation can be achieved without compromising food security and environmental goals? Global 

Change Biology, 19(8), 2285–2302. https://doi.org/10.1111/gcb.12160 

Socher, S. A., Prati, D., Boch, S., Müller, J., Baumbach, H., Gockel, S., Hemp, A., Schöning, I., Wells, 

K., Buscot, F., Kalko, E. K. V, Linsenmair, K. E., Schulze, E.-D., Weisser, W. W., & Fischer, M. 

(2013). Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 

grasslands in Germany differ between regions. Basic and Applied Ecology, 14(2), 126–136. 

https://doi.org/https://doi.org/10.1016/j.baae.2012.12.003 

Spawn, S. A., Lark, T. J., & Gibbs, H. K. (2019). Carbon emissions from cropland expansion in the 

United States. Environmental Research Letters, 14(4). https://doi.org/10.1088/1748-9326/ab0399 



83 
  

Steffen, W. et al. (2003). Global change and the earth system: a planet under pressure. Ecology and 

Society, 9(2). http://www.ecologyandsociety.org/vol9/iss2/art2 

Stergiadi, M., Van Der Perk, M., De Nijs, T. C. M., & Bierkens, M. F. P. (2016). Effects of climate change 

and land management on soil organic carbon dynamics and carbon leaching in northwestern 

Europe. Biogeosciences, 13(5), 1519–1536. https://doi.org/10.5194/bg-13-1519-2016 

Tao, F, Zhang, Z., Zhang, S., Zhu, Z., & Shi, W. (2012). Response of crop yields to climate trends since 

1980 in China . Climate Research, 54(3), 233–247. http://www.int-

res.com/abstracts/cr/v54/n3/p233-247/ 

Tao, Fulu, Palosuo, T., Valkama, E., & Mäkipää, R. (2019). Cropland soils in China have a large potential 

for carbon sequestration based on literature survey. Soil and Tillage Research, 186(March 2018), 

70–78. https://doi.org/10.1016/j.still.2018.10.009 

Teixeira, R. F. M., Domingos, T., Costa, A. P. S. V., Oliveira, R., Farropas, L., Calouro, F., Barradas, A. 

M., & Carneiro, J. P. B. G. (2011). Soil organic matter dynamics in Portuguese natural and sown 

rainfed grasslands. Ecological Modelling, 222(4), 993–1001. 

https://doi.org/https://doi.org/10.1016/j.ecolmodel.2010.11.013 

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable 

intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–

20264. https://doi.org/10.1073/pnas.1116437108 

Török, P., Dembicz, I., Dajić-Stevanović, Z., & Kuzemko, A. (2019). Grasslands of Eastern Europe. 

Reference Module in Earth Systems and Environmental Sciences, 1–11. 

https://doi.org/10.1016/b978-0-12-409548-9.12042-1 

Török, P., Valkó, O., Deák, B., Kelemen, A., Tóth, E., & Tóthmérész, B. (2016). Managing for species 

composition or diversity? Pastoral and free grazing systems in alkali steppes. Agriculture, 

Ecosystems & Environment, 234, 23–30. 

https://doi.org/https://doi.org/10.1016/j.agee.2016.01.010 

Tóth, E., Deák, B., Valkó, O., Kelemen, A., Miglécz, T., Tóthmérész, B., & Török, P. (2018). Livestock 

Type is More Crucial Than Grazing Intensity: Traditional Cattle and Sheep Grazing in Short-Grass 

Steppes. Land Degradation & Development, 29(2), 231–239. https://doi.org/doi:10.1002/ldr.2514 

Tóth, G., Jones, A., & Montanarella, L. (2013). The LUCAS topsoil database and derived information on 

the regional variability of cropland topsoil properties in the European Union. Environmental 

Monitoring and Assessment, 185(9), 7409–7425. https://doi.org/10.1007/s10661-013-3109-3 

Tripathi, A., Tripathi, D. K., Chauhan, D. K., Kumar, N., & Singh, G. S. (2016). Paradigms of climate 

change impacts on some major food sources of the world: A review on current knowledge and 

future prospects. Agriculture, Ecosystems & Environment, 216, 356–373. 

https://doi.org/https://doi.org/10.1016/j.agee.2015.09.034 



84 
  

Tubiello, F. N., Salvatore, M., Ferrara, A. F., House, J., Federici, S., Rossi, S., Biancalani, R., Condor 

Golec, R. D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz 

Sanchez, M. J., Srivastava, N., & Smith, P. (2015). The Contribution of Agriculture, Forestry and 

other Land Use activities to Global Warming, 1990–2012. Global Change Biology, 21(7), 2655–

2660. https://doi.org/doi:10.1111/gcb.12865 

Turner, W. (2014). Sensing biodiversity. Science, 346(6207), 301 LP – 302. 

https://doi.org/10.1126/science.1256014 

Václavík, T., Lautenbach, S., Kuemmerle, T., & Seppelt, R. (2013). Mapping global land system 

archetypes. Global Environmental Change, 23(6), 1637–1647. 

https://doi.org/https://doi.org/10.1016/j.gloenvcha.2013.09.004 

Valada, T., Teixeira, R., Martins, H., Castro, M., & Domingos, T. (2012). Grassland management options 

under Kyoto Protocol Article 3.4: The Portuguese case study. Options Méditerranéennes – New 

Approaches for Grassland Research in a Context of Climate and Socio-Economic Changes, A-

102, 53–56. 

Vaneeckhaute, C., Ghekiere, G., Michels, E., Vanrolleghem, P. A., Tack, F. M. G., & Meers, E. (2014). 

Chapter Four - Assessing Nutrient Use Efficiency and Environmental Pressure of Macronutrients 

in Biobased Mineral Fertilizers: A Review of Recent Advances and Best Practices at Field Scale 

(D. L. B. T.-A. in A. Sparks (ed.); Vol. 128, pp. 137–180). Academic Press. 

https://doi.org/https://doi.org/10.1016/B978-0-12-802139-2.00004-4 

Wan, Z., Hook, S., & Hulley, G. (2015). Land Processes Distributed Active Archive Center (LP DAAC). 

MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG 

V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 

https://doi.org/https://doi.org/10.5067/MODIS/MOD11C3.006 

Wang, G., Luo, Z., Han, P., Chen, H., & Xu, J. (2016). Critical carbon input to maintain current soil 

organic carbon stocks in global wheat systems. Scientific Reports, 6(December 2015), 1–8. 

https://doi.org/10.1038/srep19327 

Weihermüller, L., Graf, A., Herbst, M., & Vereecken, H. (2013). Simple pedotransfer functions to initialize 

reactive carbon pools of the RothC model. European Journal of Soil Science, 64(5), 567–575. 

https://doi.org/10.1111/ejss.12036 

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, 

B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. 

(2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators 

at various scales. Geoderma, 333(November 2017), 149–162. 

https://doi.org/10.1016/j.geoderma.2018.07.026 

Wu, G.-L., Liu, Z.-H., Zhang, L., Hu, T.-M., & Chen, J.-M. (2010). Effects of artificial grassland 



85 
  

establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland. 

Plant and Soil, 333(1), 469–479. https://doi.org/10.1007/s11104-010-0363-9 

Wu, G.-L., Yang, Z., Cui, Z., Liu, Y., Fang, N.-F., & Shi, Z.-H. (2016). Mixed artificial grasslands with 

more roots improved mine soil infiltration capacity. Journal of Hydrology, 535, 54–60. 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.01.059 

Zabel, F., Putzenlechner, B., & Mauser, W. (2014). Global agricultural land resources - A high resolution 

suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE, 

9(9), 1–12. https://doi.org/10.1371/journal.pone.0107522 

Zhang, X., Xu, M., Sun, N., Xiong, W., Huang, S., & Wu, L. (2016). Modelling and predicting crop yield, 

soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the 

North China Plain. Geoderma, 265, 176–186. 

https://doi.org/https://doi.org/10.1016/j.geoderma.2015.11.027 

Zhao, H., Shar, A. G., Li, S., Chen, Y., Shi, J., Zhang, X., & Tian, X. (2018). Effect of straw return mode 

on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping 

system. Soil and Tillage Research, 175, 178–186. 

https://doi.org/https://doi.org/10.1016/j.still.2017.09.012 

 



- 1 - 
 

Appendix 

Annex I – Parameters used to convert the calculated yields to N-yields for each respective crop type 

Crop Type 
% N 

content 
Crop Type 

% N 

content 

1 Irrigated bananas 0.112 33 Rainfed rice 1.600 

2 Rainfed bananas 0.112 34 
Irrigated sorghum  

with residues left on the field 
1.616 

3 
Irrigated barley  

with residues left on the field 
1.760 35 

Rainfed sorghum  

with residues left on the field 
1.616 

4 
Rainfed barley  

with residues left on the field 
1.760 36 

Irrigated sorghum  

with residues removed from the 

field 

1.616 

5 

Irrigated barley  

with residues removed from the 

field  

1.760 37 

Rainfed sorghum  

with residues removed from the 

field 

1.616 

6 

Rainfed barley  

with residues removed from the 

field  

1.760 38 Irrigated soybeans 6.080 

7 Irrigated cabbages 0.357 39 Rainfed soybeans 6.080 

8 Irrigated carrots 0.144 40 Irrigated sugar beet 0.208 

9 Irrigated oranges 0.180 41 Rainfed sugar beet 0.208 

10 Rainfed oranges 0.180 42 Irrigated sugarcane 0.032 

11 Irrigated coconuts 0.272 43 Rainfed sugarcane 0.032 

12 Rainfed coconuts 0.272 44 Irrigated sunflower 1.968 

13 Irrigated coffee 1.072 45 Rainfed sunflower 1.968 

14 Rainfed coffee 1.072 46 Irrigated sweet potatoes 0.112 

15 Irrigated cotton 0.088 47 Rainfed sweet potatoes 0.112 

16 Rainfed cotton 0.088 48 Irrigated tobacco 4.000 

17 Irrigated groundnuts 2.992 49 Rainfed tobacco 4.000 

18 Rainfed groundnuts 2.992 50 Irrigated tomatoes 0.140 

19 
Irrigated maize  

with residues left on the field 
1.520 51 Rainfed tomatoes 0.140 

20 
Rainfed maize  

with residues left on the field 
1.520 52 

Irrigated wheat  

with residues left on the field 
1.952 

21 

Irrigated maize  

with residues removed from the 

field 

1.520 53 
Rainfed wheat  

with residues left on the field 
1.952 

22 

Rainfed maize  

with residues removed from the 

field 

1.520 54 

Irrigated wheat  

with residues removed from the 

field 

1.952 
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Crop Type 
% N 

content 
Crop Type 

% N 

content 

23 Irrigated palm oil 0.000 55 

Rainfed wheat  

with residues removed from the 

field 

1.952 

24 Rainfed palm oil 0.000 56 Irrigated cocoa 0.640 

25 Irrigated onions 0.272 57 Rainfed cocoa 0.640 

26 Irrigated potatoes 0.256 58 Irrigated grapes 0.300 

27 Rainfed potatoes 0.256 59 Rainfed grapes 0.300 

28 
Irrigated rapeseed  

with residues left on the field 
3.136 60 Irrigated olives 0.380 

29 
Rainfed rapeseed  

with residues left on the field 
3.136 61 Rainfed olives 0.380 

30 

Irrigated rapeseed  

with residues removed from the 

field 

3.136 62 Irrigated apples 0.050 

31 

Rainfed rapeseed  

with residues removed from the 

field 

3.136 63 Rainfed apples 0.050 

32 Irrigated rice 1.600    
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Annex II – Soil organic carbon (SOC) results for both climate scenarios under analysis (RCP 4.5 and RCP 8.5), showing the total accumulated SOC for the 87 years of simulation 
under climate change (CC), in the baseline (NCC) and the difference between both results (∆SOC).  
∆SOC is the difference between the accumulated SOC under CC and the NCC scenarios. It is positive in case of increase of SOC stocks, and negative where SOC is lost. The 

regions where this loss occurs are denominated as “negative regions” where a percentage is made of the division of these “negative regions” by the total regions with potential 

for the existence of the crop type under analysis ( denominated “potential regions”). 

Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated bananas 
67 

(1,191/1,769) 

68 

(1,198/1,769) 
1,576  1,580  1,520 1,502 -56 -78 

Rainfed bananas 
64 

(1,132/1,769) 

64 

(1,132/1,769) 
2,105  2,108  1,966 1,968 -139 -140 

Irrigated barley 

with residues left on the field 

86 

(14,737/17,152) 

87 

(15,005/17,152) 
3,829  3,841  3,167 3,126 -662 -715 

Rainfed barley 

with residues left on the field 

73 

(12,566/17,152) 

75 

(12,830/17,152) 
3,819  3,831  3,344 3,315 -475 -516 

Irrigated barley 

with residues removed from the field 

79 

(3,770/4,771) 

83 

(3,952/4,771) 
2,608  2,626  2,230 2,193 -378 -433 

Rainfed barley 

with residues removed from the field 

62 

(2,960/4,771) 

65 

(3,100/4,771) 
2,600  2,617  2,374 2,347 -226 -270 

Irrigated cabbages 
87 

(6,522/7,505) 

89 

(6,712/7,505) 
2,804  2,816  2,278 2,236 -526 -580 

Irrigated carrots 
76 

(5,493/7,181) 

78 

(5,580/7,181) 
2,662  2,670  2,312 2,273 -350 -397 
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Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated oranges 
66 

(4,395/6,611) 

67 

(4,460/6,611) 
1,915  1,919  1,795 1,775 -119 -143 

Rainfed oranges 
54 

(3,557/6,611) 

55 

(3,660/6,611) 
2,241  2,269  2,142 2,149 -99 -120 

Irrigated coconuts 
71 

(654/923) 

73 

(672/923) 
2,067  2,077  1,811 1,789 -256 -288 

Rainfed coconuts 
64 

(594/923) 

64 

(587/923) 
2,634  2,617  2,521 2,521 -114 -97 

Irrigated coffee 
100 

(536/536) 

100 

(536/536) 
1,859  1,854  1,656 1,635 -203 -219 

Rainfed coffee 
71 

(380/536) 

69 

(372/536) 
2,608  2,656  2,473 2,483 -135 -173 

Irrigated cotton 
85 

(2532/2,963) 

88 

(2612/2,963) 
1,669  1,683  1,375 1,358 -294 -325 

Rainfed cotton 
54 

(1586/2,963) 

55 

(1622/2,963) 
1,658  1,674  1,588 1,585 -71 -89 

Irrigated groundnuts 
85 

(14,664/17,152) 

86 

(14,826/17,152) 
3,555  3,567  2,837 2,795 -718 -772 

Rainfed groundnuts 89 91 3,781  3,798  2,995 2,965 -787 -833 
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Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

(15,245/17,152) (15,538/17,152) 

Irrigated maize 

with residues left on the field 

88 

(15,057/17,152) 

89 

(15,304/17,152) 
3,865  3,878  3,080 3,031 -785 -847 

Rainfed maize 

with residues left on the field 

75 

(12,866/17,152) 

77 

(13,132/17,152) 
3,842  3,854  3,344 3,314 -498 -540 

Irrigated maize 

with residues removed from the field 

87 

(4,602/5,320) 

89 

(4,728/5,320) 
2,571  2,587  2,114 2,081 -457 -506 

Rainfed maize 

with residues removed from the field 

62 

(3,306/5,320) 

65 

(3,446/5,320) 
2,560  2,575  2,357 2,332 -203 -243 

Irrigated palm oil 
82 

(60/73) 

82 

(60/73) 
1,753  1,756  1,735 1,708 -18 -48 

Rainfed palm oil 
78 

(57/73) 

78 

(57/73) 
1,958  1,965  1,819 1,792 -139 -173 

Irrigated onions 
92 

(2,811/3,042) 

92 

(2,796/3,042) 
2,357  2,345  2,062 2,028 -295 -317 

Irrigated potatoes 
81 

(13,878/17,152) 

82 

(14,053/17,152) 
3,509  3,520  2,861 2,819 -649 -701 

Rainfed potatoes 
83 

(14,235/17,152) 

85 

(14,561/17,152) 
3,687  3,702  2,995 2,965 -692 -737 
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Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated rapeseed 

with residues left on the field 

80 

(13,770/17,152) 

81 

(13,950/17,152) 
3,708  3,716  3,137 3,092 -571 -623 

Rainfed rapeseed 

with residues left on the field 

78 

(13,396/17,152) 

80 

(13,686/17,152) 
3,896  3,908  3,344 3,314 -552 -594 

Irrigated rapeseed 

with residues removed from the field 

80 

(13,706/17,152) 

81 

(13,880/17,152) 
3,402  3,412  2,786 2,741 -617 -671 

Rainfed rapeseed 

with residues removed from the field 

77 

(13,272/17,152) 

79 

(13,527/17,152) 
3,592  3,606  2,994 2,964 -597 -642 

Irrigated rice 
98 

(16,864/17,152) 

99 

(16909/17,152) 
4,008  4,027  2,792 2,748 -1,216 -1,279 

Rainfed rice 
95 

(16,291/17,152) 

96 

(16,397/17,152) 
4,002  4,021  2,995 2,965 -1,007 -1,056 

Irrigated sorghum 

with residues left on the field 

92 

(15,729/17,152) 

94 

(16,072/17,152) 
4,027  4,041  3,218 3,181 -809 -860 

Rainfed sorghum 

with residues left on the field 

85 

(14,579/17,152) 

87 

(14,923/17,152) 
4,020  4,034  3,344 3,315 -676 -719 

Irrigated sorghum 

with residues removed from the field 

63 

(3,703/5,878) 

66 

(3,889/5,878) 
1,963  1,992  1,686 1,681 -277 -311 

Rainfed sorghum 52 54 1,959  1,988  1,877 1,882 -83 -106 
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Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

with residues removed from the field (3,056/5,878) (3,195/5,878) 

Irrigated soybeans 
80 

(13,768/17,152) 

81 

(13,952/17,152) 
3,462  3,473  2,809 2,764 -653 -710 

Rainfed soybeans 
85 

(14,660/17,152) 

87 

(14,965/17,152) 
3,703  3,719  2,995 2,965 -708 -754 

Irrigated sugar beet 
96 

(2,931/3,058) 

98 

(2,996/3,058) 
4,198  4,200  3,356 3,275 -842 -925 

Rainfed sugar beet 
78 

(2,381/3,058) 

79 

(2,428/3,058) 
4,160  4,161  3,615 3,556 -545 -605 

Irrigated sugarcane 
100 

(4,000/4,018) 

100 

(4,000/4,018) 
3,504  3,505  1,745 1,724 -1,760 -1,782 

Rainfed sugarcane 
98 

(3,944/4,018) 

98 

(3,920/4,018) 
3,300  3,312  2,152 2,164 -1,148 -1,147 

Irrigated sunflower 
56 

(2,645/4,754) 

57 

(2,720/4,754) 
2,440  2,440  2,205 2,167 -235 -273 

Rainfed sunflower 
59 

(2,797/4,754) 

62 

(2,953/4,754) 
2,625  2,660  2,340 2,318 -285 -342 

Irrigated sweet potatoes 
93 

(15,957/17,152) 

93 

(15,966/17,152) 
3,430  3,440  2,639 2,584 -791 -856 
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Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Rainfed sweet potatoes 
82 

(14,071/17,152) 

84 

(14,380/17,152) 
3,647  3,662  2,995 2,965 -652 -697 

Irrigated tobacco 
70 

(7,427/10,641) 

72 

(7,663/10,641) 
2,159  2,175  1,878 1,864 -281 -311 

Rainfed tobacco 
52 

(5,492/10,641) 

54 

(5,766/10,641) 
2,163  2,179  2,083 2,076 -80 -103 

Irrigated tomatoes 
94 

(16,189/17,152) 

96 

(16,426/17,152) 
3,706  3,722  2,703 2,652 -1,003 -1,069 

Rainfed tomatoes 
82 

(14,005/17,152) 

83 

(14,284/17,152) 
3,670  3,685  2,995 2,965 -675 -720 

Irrigated wheat 

with residues left on the field 

91 

(15,619/17,152) 

92 

(15,712/17,152) 
3,861  3,869  3,124 3,082 -738 -788 

Rainfed wheat 

with residues left on the field 

74 

(12,654/17,152) 

75 

(12,909/17,152) 
3,841  3,853  3,344 3,314 -498 -538 

Irrigated wheat 

with residues removed from the field 

80 

(6,329/7,892) 

82 

(6,466/7,892) 
3,429  3,442  2,890 2,844 -539 -598 

Rainfed wheat 

with residues removed from the field 

67 

(5,272/7,892) 

69 

(5,445/7,892) 
3,458  3,475  3,025 2,992 -433 -483 

Irrigated cocoa 100 100 2,358  2,344  2,005 1,977 -353 -368 
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Crop Type 

Percentage of regions with SOC’s 

loss 

(negative regions/potential ones) 

Accumulated 

SOC NCC 

(t C/ha) 

Accumulated SOC CC  

(t C/ha) 

Global average ∆SOC 

(t C/ha) 

(∆SOC=SOC CC–SOC NCC) 

Climate Scenario 
Climate 

Scenario 
Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

(286/286) (286/286) 

Rainfed cocoa 
78 

(223/286) 

71 

(202/286) 
2,984  2,929  2,940 2,948 -44 19 

Irrigated grapes 
55 

(2,693/4,874) 

57 

(2,774/4,874) 
2,192  2,220  2,084 2,095 -108 -125 

Rainfed grapes 
83 

(4,049/4,874) 

83 

(4,056/4,874) 
2,176  2,203  1,840 1,839 -336 -365 

Irrigated olives 
100 

(236/236) 

100 

(236/236) 
1,487  1,489  1,334 1,309 -153 -180 

Rainfed olives 
31 

(74/236) 

31 

(73/236) 
1,643  1,639  1,739 1,718 96 78 

Irrigated apples 
100 

(4,388/4,394) 

100 

(4,394/4,394) 
1,948  1,954  1,646 1,617 -301 -337 

Rainfed apples 
62 

(2,724/4,394) 

63 

(2,776/4,394) 
2,300  2,325  2,132 2,145 -168 -180 
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Annex III – Yield results where it is possible to see the percentage of the regions where the potential yield is higher than the calculated required yield for soil carbon stabilization 
under climate change (CC) scenarios (RCP 4.5 and RCP 8.5).  
The difference between these two yields was assessed individuality via ∆yield (difference between the potential yield and the yield required for the respective CC scenario), as 
well as the difference between yields from a scenario with no climate change  (NCC) and the required yield for the respective CC scenario. If ∆yield is negative, then the loss of 
SOC stocks is inevitable because the yield required is higher than what the land can offer, which corresponds to the potential yield. 

 

Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

Irrigated 

bananas 

59 

(530/905) 

56 

(510/905) 
0,07 0,07 0,79 0,96 -0,72 -0,89 0,29 0,29 -0,50 -0,68 

Rainfed bananas 
65 

(589/905) 

66 

(593/905) 
0,07 0,07 0,49 0,54 -0,42 -0,47 0,29 0,29 -0,20 -0,25 

Irrigated barley 

with residues left 

on the field 

63 

(6781/10,706) 

60 

(6380/10,706) 
0,15 0,15 2,85 3,76 -2,70 -3,61 2,57 2,57 -0,28 -1,19 

Rainfed barley 

with residues left 

on the field 

72 

(7656/10,706) 

69 

(7401/10,706) 
0,11 0,11 2,26 2,48 -2,15 -2,37 2,57 2,57 0,31 0,09 

Irrigated barley 

with residues 

removed from 

the field 

70 

(2911/4,151) 

66 

(2749/4,151) 
0,15 0,15 1,44 1,50 -1,29 -1,35 1,20 1,20 -0,24 -0,30 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

Rainfed barley 

with residues 

removed from 

the field 

80 

(3312/4,151) 

78 

(3229/4,151) 
0,11 0,11 0,81 0,79 -0,70 -0,69 1,20 1,20 0,39 0,41 

Irrigated 

cabbages 

12 

(644/5,496) 

9 

(522/5,496) 
0,23 0,23 17,12 20,58 -16,89 -20,35 1,30 1,30 -15,81 -19,27 

Irrigated carrots 
28 

(1835/6,525) 

25 

(1617/6,525) 
0,17 0,17 11,33 12,90 -11,16 -12,73 1,40 1,40 -9,93 -11,50 

Irrigated oranges 
71 

(3362/4,739) 

68 

(3207/4,739) 
0,27 0,27 3,12 3,54 -2,85 -3,27 1,44 1,44 -1,68 -2,10 

Rainfed oranges 
75 

(3537/4,739) 

72 

(3433/4,739) 
0,19 0,19 1,28 1,53 -1,09 -1,34 1,44 1,44 0,15 -0,09 

Irrigated 

coconuts 

56 

(233/415) 

49 

(203/415) 
0,04 0,04 1,17 1,15 -1,12 -1,10 0,17 0,17 -0,99 -0,97 

Rainfed 

coconuts 

68 

(284/415) 

67 

(280/415) 
0,02 0,02 0,23 0,25 -0,21 -0,23 0,17 0,17 -0,06 -0,07 

Irrigated coffee 
53 

(208/392) 

45 

(177/392) 
0,01 0,01 0,12 0,19 -0,11 -0,18 0,05 0,05 -0,06 -0,14 

Rainfed coffee 51 42 0,00 0,00 0,11 0,13 -0,11 -0,13 0,05 0,05 -0,06 -0,08 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

(199/392) (165/392) 

Irrigated cotton 
28 

(782/2,816) 

22 

(616/2816) 
0,08 0,08 1,50 2,20 -1,42 -2,12 0,08 0,08 -1,42 -2,12 

Rainfed cotton 
52 

(1461/2,816) 

51 

(1439/2,816) 
0,06 0,06 0,71 0,61 -0,65 -0,55 0,08 0,08 -0,63 -0,53 

Irrigated 

groundnuts 

76 

(9068/11,891) 

73 

(8719/11,891) 
0,04 0,04 5,75 6,01 -5,71 -5,97 1,07 1,07 -4,68 -4,94 

Rainfed 

groundnuts 

72 

(8515/11,891) 

70 

(8283/11,891) 
0,03 0,03 4,01 4,72 -3,98 -4,69 1,07 1,07 -2,93 -3,65 

Irrigated maize 

with residues left 

on the field 

71 

(10465/14,803) 

68 

(10126/14,803) 
0,25 0,25 6,08 5,95 -5,83 -5,70 3,95 3,95 -2,13 -2,00 

Rainfed maize 

with residues left 

on the field 

83 

(12323/14,803) 

82 

(12101/14,803) 
0,17 0,17 3,01 3,36 -2,84 -3,20 3,95 3,95 0,94 0,59 

Irrigated maize 

with residues 

removed from 

the field 

67 

(3397/5,045) 

63 

(3179/5,045) 
0,25 0,25 1,87 2,20 -1,62 -1,95 1,40 1,40 -0,47 -0,80 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

Rainfed maize 

with residues 

removed from 

the field 

83 

(4182/5,045) 

81 

(4085/5,045) 
0,17 0,17 0,88 0,89 -0,71 -0,72 1,40 1,40 0,52 0,51 

Irrigated palm oil 
47 

(15/32) 

44 

(14/32) 
0,01 0,01 0,01 0,18 0,00 -0,18 0,01 0,01 0,00 -0,17 

Rainfed palm oil 
69 

(22/32) 

53 

(17/32) 
0,00 0,00 0,00 0,01 0,00 -0,01 0,01 0,01 0,01 0,01 

Irrigated onions 
15 

(397/2,736) 

12 

(339/2,736) 
0,04 0,04 3,49 4,15 -3,45 -4,11 0,63 0,63 -2,86 -3,52 

Irrigated 

potatoes 

55 

(5693/10,420) 

52 

(5419/10,420) 
0,61 0,61 12,65 14,87 -12,05 -14,26 2,68 2,68 -9,98 -12,19 

Rainfed potatoes 
58 

(6032/10,420) 

56 

(5795/10,420) 
0,47 0,47 10,79 12,47 -10,33 -12,01 2,68 2,68 -8,11 -9,79 

Irrigated 

rapeseed 

with residues left 

on the field 

57 

(6151/10,831) 

53 

(5752/10,831) 
0,10 0,10 3,66 3,86 -3,56 -3,76 1,31 1,31 -2,35 -2,55 

Rainfed 63 61 0,07 0,07 2,10 2,51 -2,03 -2,44 1,31 1,31 -0,78 -1,19 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

rapeseed 

with residues left 

on the field 

(6,802/10,832) (6,567/10,831) 

Irrigated 

rapeseed 

with residues 

removed from 

the field 

54 

(5,877/10,831) 

51 

(5,504/10,831) 
0,10 0,10 6,15 7,41 -6,04 -7,31 1,31 1,31 -4,83 -6,10 

Rainfed 

rapeseed 

with residues 

removed from 

the field 

60 

(6,529/10,831) 

58 

(6,297/10,831) 
0,07 0,07 3,82 4,96 -3,76 -4,90 1,31 1,31 -2,51 -3,65 

Irrigated rice 
48 

(5,219/10,831) 

44 

(4,749/10,831) 
0,13 0,13 5,87 6,31 -5,74 -6,18 1,31 1,31 -4,56 -5,00 

Rainfed rice 
77 

(6,158/7,991) 

76 

(6,085/7,991) 
0,16 0,16 4,29 5,82 -4,13 -5,66 2,15 2,15 -2,14 -3,67 

Irrigated 

sorghum 

70 

(10,342/14,742) 

67 

(9,926/14,742) 
0,10 0,10 6,92 8,83 -6,81 -8,72 2,72 2,72 -4,19 -6,10 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

with residues left 

on the field 

Rainfed 

sorghum 

with residues left 

on the field 

78 

(11,453/14,742) 

76 

(11,200/14,742) 
0,07 0,07 3,77 4,38 -3,70 -4,31 2,72 2,72 -1,05 -1,66 

Irrigated 

sorghum 

with residues 

removed from 

the field 

79 

(4,523/5,757) 

76 

(4,352/5,757) 
0,10 0,10 0,85 1,00 -0,75 -0,89 1,22 1,22 0,37 0,23 

Rainfed 

sorghum 

with residues 

removed from 

the field 

89 

(5,128/5,757) 

88 

(5,063/5,757) 
0,07 0,07 0,25 0,31 -0,17 -0,24 1,22 1,22 0,98 0,91 

Irrigated 

soybeans 

75 

(10,289/13,663) 

72 

(9,897/13,663) 
0,10 0,10 8,39 9,84 -8,29 -9,74 1,71 1,71 -6,68 -8,13 

Rainfed 73 72 0,07 0,07 6,70 6,92 -6,63 -6,85 1,71 1,71 -4,99 -5,21 



- 16 - 
 

Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

soybeans (9,999/13,663) (9,800/13,663) 

Irrigated sugar 

beet 

8 

(233/3,043) 

5 

(140/3,043) 
0,79 0,79 14,58 21,55 -13,80 -20,76 1,20 1,20 -13,39 -20,36 

Rainfed sugar 

beet 

35 

(1,067/3,043) 

32 

(965/3,043) 
0,45 0,45 8,47 9,29 -8,02 -8,84 1,20 1,20 -7,27 -8,09 

Irrigated 

sugarcane 

11 

(422/3,937) 

10 

(413/3,937) 
5,05 5,05 5,74 6,11 -0,68 -1,06 1,95 1,95 -3,79 -4,17 

Rainfed 

sugarcane 

36 

(1,405/3,937) 

36 

(1,400/3,937) 
2,70 2,70 2,80 3,45 -0,10 -0,75 1,95 1,95 -0,86 -1,50 

Irrigated 

sunflower 

71 

(3,195/4,503) 

69 

(3,100/4,503) 
0,10 0,10 1,31 1,34 -1,21 -1,24 0,58 0,58 -0,72 -0,76 

Rainfed 

sunflower 

68 

(3,063/4,503) 

66 

(2,965/4,503) 
0,05 0,05 0,90 1,18 -0,85 -1,12 0,58 0,58 -0,32 -0,59 

Irrigated sweet 

potatoes 

76 

(7,837/10,272) 

73 

(7,539/10,272) 
0,26 0,26 18,15 17,50 -17,90 -17,25 3,61 3,61 -14,54 -13,90 

Rainfed sweet 

potatoes 

83 

(8,577/10,272) 

82 

(8,413/10,272) 
0,17 0,17 6,61 8,07 -6,44 -7,91 3,61 3,61 -3,00 -4,47 

Irrigated tobacco 
52 

(5,147/9,848) 

47 

(4,672/9,848) 
0,03 0,03 0,92 1,05 -0,90 -1,03 0,31 0,31 -0,62 -0,75 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

Rainfed tobacco 
68 

(6,648/9,848) 

65 

(6,386/9,848) 
0,02 0,02 0,50 0,55 -0,48 -0,53 0,31 0,31 -0,19 -0,24 

Irrigated 

tomatoes 

30 

(4,393/14,549) 

26 

(3,798/14,549) 
1,73 1,73 53,46 55,91 -51,73 -54,18 2,35 2,35 -51,11 -53,56 

Rainfed 

tomatoes 

52 

(7,621/14,549) 

50 

(7,210/14,549) 
0,98 0,98 22,85 27,58 -21,87 -26,59 2,35 2,35 -20,50 -25,23 

Irrigated wheat 

with residues left 

on the field 

66 

(7,077/10,276) 

62 

(6,683/10,726) 
0,36 0,36 3,67 3,74 -3,31 -3,38 2,72 2,72 -0,95 -1,02 

Rainfed wheat 

with residues left 

on the field 

75 

(8,000/10,726) 

73 

(7,787/10,726) 
0,21 0,21 2,18 1,97 -1,97 -1,76 2,72 2,72 0,54 0,76 

Irrigated wheat 

with residues 

removed from 

the field 

72 

(5,177/7,194) 

68 

(4,891/7,194) 
0,36 0,36 2,02 2,54 -1,66 -2,18 2,24 2,24 0,22 -0,30 

Rainfed wheat 

with residues 

removed from 

77 

(5,560/7,194) 

75 

(5,408/7,194) 
0,21 0,21 1,51 1,84 -1,30 -1,63 2,24 2,24 0,73 0,40 
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Crop Type 

Percentage of Positive Regions 

(positive regions / existent ones) 

Average NCC 

Yield (t/ha) 

Average CC 

Yield (t/ha) 
Yield NCC – Yield CC (t/ha) 

Average 

Potential Yield 

(t/ha) 

Average ∆Yield 

(t/ha) 

(∆yield=yield 

potential–yield CC) 

Climate Scenario 
Climate 

Scenario 

Climate 

Scenario 
Climate Scenario 

Climate 

Scenario 
Climate Scenario 

RCP 4.5 RCP 8.5 
RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 
RCP 4.5 RCP 8.5 

RCP 

4.5 

RCP 

8.5 

RCP 

4.5 

RCP 

8.5 

the field 

Irrigated cocoa 
56 

(114/202) 

48 

(97/202) 
0,00 0,00 0,11 0,14 -0,11 -0,14 0,06 0,06 -0,05 -0,08 

Rainfed cocoa 
66 

(134/202) 

68 

(138/202) 
0,00 0,00 0,03 0,02 -0,03 -0,02 0,06 0,06 0,03 0,04 

Irrigated grapes 
75 

(2,782/3,713) 

73 

(2,721/3,713) 
0,15 0,15 1,36 1,16 -1,21 -1,01 1,14 1,14 -0,23 -0,02 

Rainfed grapes 
59 

(2,189/3,713) 

56 

(2,063/3,713) 
0,11 0,11 1,73 2,04 -1,62 -1,93 1,14 1,14 -0,59 -0,90 

Irrigated olives 
43 

(85/199) 

31 

(61/199) 
0,01 0,01 0,09 0,10 -0,08 -0,10 0,05 0,05 -0,04 -0,05 

Rainfed olives 
83 

(165/199) 

80 

(160/199) 
0,00 0,00 0,02 0,02 -0,01 -0,02 0,05 0,05 0,03 0,03 

Irrigated apples 
58 

(1,971/3,391) 

54 

(1826/3,391) 
0,23 0,23 2,89 4,02 -2,66 -3,79 1,05 1,05 -1,83 -2,97 

Rainfed apples 
72 

(2,436/3,391) 

70 

(2366/3,391) 
0,16 0,16 1,12 1,38 -0,96 -1,22 1,05 1,05 -0,07 -0,33 
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Annex IV – Results from the balance made between emissions from soil organic carbon (SOC) mineralization under climate change (CC) scenarios (RCP 4.5 and RCP 8.5) and 
the emissions due to the additional fertilizers needed to attain the required yield to avoid losing SOC for the 87 years of simulation.  
When emissions from fertilizers production and application are higher than the avoided emissions from SOC mineralization, then that region is considered a “negative region” 

because the fertilizer use that supports the increase in yield would actually lead to an increase in CO2eq emissions, and vice-versa. A balance per crop type was also made (adding 

all the emissions from the SOC previously calculated and subtracting the sum of the emissions from the fertilizers application for all regions) as well as an average per region. 

When a positive value is found for these two columns, it means that the increase in yields is environmentally positive because the CO2eq emissions from fertilizer use are lower 

than the avoided emissions from the stabilization of SOC through intensification. 

 

Crop Type 

Number of positive 

regions 

Number of Negative 

Regions 

Crop Type Balance 

(t CO2eq.year/ha) 

Average Region Balance 

(t CO2eq.year/ha) 

Climate Scenario Climate Scenario Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated bananas 357 314 173 196 17,394 116,372 33 228 

Rainfed bananas 285 286 304 307 341,274 361,383 579 609 

Irrigated barley 

with residues left on the field 
2,231 1,750 4,550 4,630 -60,179,801 -52,189,308 -8,875 -8,180 

Rainfed barley 

with residues left on the field 
2,702 2,390 4,954 5,011 -60,549,778 -26,166,807 -7,909 -3,536 

Irrigated barley 

with residues removed from the field 
461 363 2,450 2,386 -42,121,879 -20,627,252 -14,470 -7,504 

Rainfed barley 

with residues removed from the field 
452 376 2,860 2,853 -19,938,094 -11,401,559 -6,020 -3,531 

Irrigated cabbages 58 31 586 491 -1,674,580 -2,006,966 -2,600 -3,845 

Irrigated carrots 72 78 1,763 1,539 -8,041,772 -1,920,578 -4,382 -1,188 

Irrigated oranges 1,729 1,568 1,633 1,639 1,566,416 962,350 466 300 

Rainfed oranges 1,382 1,321 2,155 2,112 566,842 -46,918 160 -14 



- 20 - 
 

Crop Type 

Number of positive 

regions 

Number of Negative 

Regions 

Crop Type Balance 

(t CO2eq.year/ha) 

Average Region Balance 

(t CO2eq.year/ha) 

Climate Scenario Climate Scenario Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Irrigated coconuts 116 88 117 115 19,380 -170,363 83 -839 

Rainfed coconuts 158 138 126 142 115,411 84,166 406 301 

Irrigated coffee 34 16 174 161 -110,289 -178,230 -530 -1,007 

Rainfed coffee 27 22 172 143 -229,698 92,176 -1,154 559 

Irrigated cotton 352 253 430 363 25,081 -16,949 32 -28 

Rainfed cotton 249 227 1,212 1,212 814,984 784,795 558 545 

Irrigated groundnuts 5,803 5,165 3,265 3,554 -11,981,144 -27,679,971 -1,321 -3,175 

Rainfed groundnuts 5,554 5,266 2,961 3,017 -39,382,032 -19,299,676 -4,625 -2,330 

Irrigated maize 

with residues left on the field 
2,670 2,208 7,795 7,918 -201,046,767 -141,881,424 -19,211 -14,012 

Rainfed maize 

with residues left on the field 
4,055 3,784 8,268 8,317 -42,891,817 -63,130,065 -3,481 -5,217 

Irrigated maize 

with residues removed from the field 
470 291 2,927 2,888 -44,159,523 -34,352,067 -13,000 -10,806 

Rainfed maize 

with residues removed from the field 
737 630 3,445 3,455 -87,505,831 -64,460,664 -20,924 -15,780 

Irrigated palm oil 2 0 13 14 -111,153 -180,055 -7,410 -12,861 

Rainfed palm oil 2 0 20 17 -14,187 -40,629 -645 -2,390 

Irrigated onions 8 10 389 329 -5,458,280 -1,583,685 -13,749 -4,672 

Irrigated potatoes 4,076 3,876 1,617 1,543 -4,275,964 -15,034,397 -751 -2,774 
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Crop Type 

Number of positive 

regions 

Number of Negative 

Regions 

Crop Type Balance 

(t CO2eq.year/ha) 

Average Region Balance 

(t CO2eq.year/ha) 

Climate Scenario Climate Scenario Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Rainfed potatoes 4,311 4,239 1,721 1,556 -25,499,690 -2,585,112 -4,227 -446 

Irrigated rapeseed 

with residues left on the field 
2,211 1,834 3,940 3,918 -66,083,171 -77,402,434 -10,743 -13,457 

Rainfed rapeseed 

with residues left on the field 
2,416 2,180 4,386 4,387 -71,352,499 -85,009,181 -10,490 -12,945 

Irrigated rapeseed 

with residues removed from the field 
2,100 1,744 3,777 3,760 -61,902,708 -78,717,519 -10,533 -14,302 

Rainfed rapeseed 

with residues removed from the field 
2,211 1,962 4,318 4,335 -58,573,692 -45,048,407 -8,971 -7,154 

Irrigated rice 3,961 3,405 1,258 1,344 -21,863,550 -23,126,643 -4,189 -4,870 

Rainfed rice 4,948 4,886 1,210 1,199 -12,087,455 -11,499,604 -1,963 -1,890 

Irrigated sorghum 

with residues left on the field 
5,975 5,589 4,367 4,337 -80,581,684 -66,308,826 -7,792 -6,680 

Rainfed sorghum 

with residues left on the field 
6,515 6,275 4,938 4,925 -59,711,876 -48,443,822 -5,214 -4,325 

Irrigated sorghum 

with residues removed from the field 
1,266 1,252 3,257 3,100 -30,983,640 -43,179,412 -6,850 -9,922 

Rainfed sorghum 

with residues removed from the field 
1,453 1,490 3,675 3,573 -4,567,509 -3,525,646 -891 -696 

Irrigated soybeans 4,114 3,909 6,175 5,988 -77,243,508 -165,310,714 -7,507 -16,703 
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Crop Type 

Number of positive 

regions 

Number of Negative 

Regions 

Crop Type Balance 

(t CO2eq.year/ha) 

Average Region Balance 

(t CO2eq.year/ha) 

Climate Scenario Climate Scenario Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Rainfed soybeans 4,067 4,076 5,932 5,724 -196,222,433 -145,904,323 -19,624 -14,888 

Irrigated sugar beet 22 19 211 121 -610 901 -1 054,459 -2,622 -7,532 

Rainfed sugar beet 43 29 1,024 936 -3 020 916 -2 896,101 -2,831 -3,001 

Irrigated sugarcane 369 363 53 50 643,511 544,728 1,525 1,319 

Rainfed sugarcane 1,261 1,236 144 164 1,807,952 -2,726,113 1,287 -1,947 

Irrigated sunflower 101 83 3,094 3,017 -30,790,250 -37,495,003 -9,637 -12,095 

Rainfed sunflower 93 69 2,970 2,896 -22,879,401 -19,503,286 -7,470 -6,578 

Irrigated sweet potatoes 6,545 6,249 1,292 1,290 4,482,709 3,321,144 572 441 

Rainfed sweet potatoes 5,872 5,948 2,705 2,465 4,830,365 5,217,372 563 620 

Irrigated tobacco 258 192 4,889 4,480 -34,829,384 -19,443,728 -6,767 -4,162 

Rainfed tobacco 197 142 6,451 6,244 -15,756,638 -22,615,260 -2,370 -3,541 

Irrigated tomatoes 2,936 2,674 1,457 1,124 -4,775,118 -3,093,198 -1,087 -814 

Rainfed tomatoes 4,128 3,928 3,493 3,282 -282,819 -2,115,576 -37 -293 

Irrigated wheat 

with residues left on the field 
2,156 1,579 4,921 5,104 -115,791,686 -55,413,461 -16,362 -8,292 

Rainfed wheat 

with residues left on the field 
2,767 2,371 5,233 5,416 -63,475,924 -59,469,345 -7,934 -7,637 

Irrigated wheat 

with residues removed from the field 
887 572 4,290 4,319 -52,307,832 -65,916,820 -10,104 -13,477 

Rainfed wheat 879 664 4,681 4,744 -112,523,872 -56,114,588 -20,238 -10,376 
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Crop Type 

Number of positive 

regions 

Number of Negative 

Regions 

Crop Type Balance 

(t CO2eq.year/ha) 

Average Region Balance 

(t CO2eq.year/ha) 

Climate Scenario Climate Scenario Climate Scenario Climate Scenario 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

with residues removed from the field 

Irrigated cocoa 13 5 101 92 -28,542 -79,838 -250 -823 

Rainfed cocoa 44 39 90 99 57,539 45,669 429 331 

Irrigated grapes 992 949 1,790 1,772 737,192 -786,447 265 -289 

Rainfed grapes 1,259 1,078 930 985 -3,567,042 -1 236,744 -1,630 -599 

Irrigated olives 20 6 65 55 -113,832 -108,172 -1,339 -1,773 

Rainfed olives 13 9 152 151 114,413 102,151 693 638 

Irrigated apples 1,892 1,758 79 68 588,403 677,603 299 371 

Rainfed apples 1,244 1,202 1,192 1,164 1,363,372 159,980 560 68 

 

 


